Simulation Model for Rainfall Intensity to Landslide Susceptibility
(Case Study in Kota Wisata Batu, East Java)
I will put the dimension here
Abstract
Landslides are one of the most hazardous natural disasters because their occurrences are often destructive to natural and artificial structures on earth and reduce, the quality of the surrounding environment. Predicting the susceptibility of an area to landslides is essential for reducing losses in terms of property, human lives, and environmental damages. Kota Wisata Batu (KWB) is one of areas which having a highest landslide potential in East Java, Indonesia, recording data mentioned that there are 109 landslides in 2022 caused by highest rainfall intensity of 502 mm with a number of intensities of 2977mm per year. Study purposed to identify the factors contributing to landslide occurrences using a geodetic measurement method. The study uses geographic information system (GIS) and PRISMA software analyses to examine and/ or evaluate the relationship between rainfall intensity and landslide susceptibility. The study results the generation of rainfall patterns and maps highlighting sensitivity areas to landslides. These visual representations the classification area as a high-risk and susceptibility zone to landslides at Kota Wisata Batu, East Java. January to April, and August to November should have pay attention since these months is reflection of monsoonal climate with the hard rain in a few days without the raining pause. Some places which are required to pay attention, such as: Gunungsari, Tulungrejo, and Songgokerto.
References
Abedin, J., Rabby, Y. W., Hasan, I., & Akter, H. An investigation of the characteristics, causes, and consequences of June 13, 2017, landslides in Rangamati District Bangladesh. Geoenvironmental Disasters, Vol 7, No. 1, pp. 1-19. 2020.
Skilodimou, H. D., Bathrellos, G. D., Koskeridou, E., Soukis, K., & Rozos, D. Physical and anthropogenic factors related to landslide activity in the northern Peloponnese, Greece. Land, Vol. 7, No. 85, pp. 2-18. 2018.
Bozzano, F.; Cipriani, I.; Mazzanti, P.; Prestininzi, A. Displacement patterns of a landslide affected by human activities: Insights from ground-based InSAR monitoring. Nat. Hazards, Vol. 59, pp. 1377–1396. 2011.
Kriswibowo, R., Ramdani, F., & Aknuranda, I.. Exploring the role of geospatial technology in disaster management of Batu City: Qualitative analysis using RQDA method. Journal of Information Technology and Computer Science, Vol. 6, No. 1, 80–95. 2021.
Muhammad Fathur Rouf Hasan, Putera Agung Maha Agung, Adi Susilo, Eko Andi Suryo, Adnan Bin Zainorabidin, Andrias Rudi Hermawan. Wedge Slope Failure of Natural Sedimentary Rock Formation Based on Weathering Potential. International Journal of Design & Nature and Ecodynamics Vol. 19, No. 2, pp. 387-396. 2024.
Siswahyudi, P., Ramdani, F., & Bachtiar, F. A. Evaluating Conceptual Framework for Landslides Natural Disaster Management using Feature Analysis. Journal of Information Technology and Computer Science, Vol. 4, No. 3, pp. 241–252. 2019.
Davies, T. Landslide Hazards, Risks, and Disasters: Introduction. LandslideHazards, Risks, and Disasters. Elsevier Inc, 473 p. 2015.
Putera Agung Maha Agung, Mustaffa Anjang Ahmad, Muhammad Fathur Rouf Hasan. Probability Liquefaction on Silty Sand Layer on Central Jakarta. International Journal of Integrated Engineering, Vol. 14, No. 9, pp. 48-55. 2022.
Dou, J., Bui, D. T., Yunus, A. P., Jia, K., Song, X., Revhaug, I., Xia, H., & Zhu, Z. Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan. PLoS ONE, Vol. 10, No. 7, pp. 1-29. 2015.
Putera Agung Maha Agung, Ramlan Sultan, Muhammad Idris, Agus Tugas Sudjianto, Mustaffa Anjang Ahmad, Muhammad Fathur Rouf Hasan. Probabilistic of in Situ Seismic Soil Liquefaction Potential Based on CPT-Data in Central Jakarta, Indonesia. International Journal of Sustainable Construction Engineering and Technology, Vol. 14, No. 1, pp. 241-248. 2023.
Hartono, R. Landsat 7 Imagery Interpretation for Mapping Potential Hazard of Landslide in Batu City Area of East Java Province, Indonesia. ICGE Vol. 79, pp. 24–27. 2017.
Firdaus, H. S., & Sukojo, B. M. Pemetaan Daerah Rawan Longsor dengan Metode Penginderaan Jauh dan Operasi Berbasis Spasial, Studi Kasus Kota Batu Jawa Timur. Jurnal Geosaintek, Vol. 1, No. 1, pp. 25-34. 2015.
Suprapto, F. A., Juanda, B., Rustiadi, E., & Munibah, K. Study of Disaster Susceptibility and Economic Vulnerability to Strengthen Disaster Risk Reduction. Land, Vol 11, pp. 1-23. 2022.
Zhou, X. P. & Cheng, H. Analysis of stability of three-dimensional slopes using the rigorous limit equilibrium method. Engineering, Geology Vol. 160, 21–33. 2013.
Mergili, M., Marchesini, I., Rossi, M., Fausto, G. & Fellin, W. F. Spatially distributed three-dimensional slope stability modelling in a raster GIS. Geomorphology Vol. 206, pp. 178–195. 2014.
Liu, S. Y., Shao, L. T. & Li, H. J. Slope stability analysis using the limit equilibrium method and two finite element methods. Computers and Geotechnics, Vol. 63, pp. 291–298. 2015.
Mahato R, Bushi D, Nimasow G, Nimasow OD and Joshi RC. AHP and GIS-based delineation of groundwater potential of Papum Pare District of Arunachal Pradesh, India. Journal of the Geological Society of India 98, Vol. 1, pp. 102–112. 2022.
Wang G, Zhao B, Wu B, Zhang C and Liu W Intelligent prediction of slope stability based on visual exploratory data analysis of 77 in situ cases. International Journal of Mining Science and Technology, Vol. 33, No. 1, pp. 47–59. 2023.
Xianghui Jian. Slope visualisation and stability study using geographic information science. Geotechnical Research, Emerald Publishing, pp. 1-11. 2023.
Lü, G., Batty, M., Strobl, J., Lin, H., Zhu, A. X., & Chen, M. Reflections and speculations on the progress in Geographic Information Systems (GIS): a geographic perspective. International Journal of Geographical Information Science, Vol. 33, No. 2, pp. 346–367. 2019.
Süzen ML, Doyuran V. Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Eng Geol. Vol. 71, pp. 303–321.
Chang, K. T. Introduction to geographic information systems, ninth edition (9th ed.). McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121, 464 p. 2018.
Xie, M., Esaki, T., Zhou, G., & Mitani, Y. Geographic Information Systems-Based Three-Dimensional Critical Slope Stability Analysis and Landslide Hazard Assessment. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 12, pp. 1109–1118. 2003.
Agung, P. A. M., Hasan, M. F. R., Susilo, A., Ahmad, M. A., Ahmad, M. J. Bin, Abdurrahman, U. A., Sudjianto, A. T., & Suryo, E. A. Compilation of Parameter Control for Mapping the Potential Landslide Areas. Civil Engineering Journal, Vol. 9, No. 04, pp. 974–989. 2023.
M. Kamiński, P. Zientara, and M. Krawczyk. Electrical resistivity tomography and digital aerial photogrammetry in the research of the ‘Bachledzki Hill’ active landslide – in Podhale (Poland). Eng. Geol., Vol. 285, p. 106004. 2021.
A. Salimah, M. F. R. Hasan, Suripto, Yelvi, and I. H. Sasongko. Analisis Stabilitas dan Perkuatan Lereng Menggunakan PLAXIS2D di Desa Sukaresmi, Sukabumi, Jawa Barat. Jukung (Jurnal Tek. Lingkungan), Vol. 5, No. 2, pp. 29–36. 2019.
C. Ling, Q. Xu, Q. Zhang, J. Ran, and H. Lv, Application of Electrical Resistivity Tomography for Investigating the Internal Structure of A Translational Landslide and Characterizing its Groundwater Circulation (Kualiangzi Landslide, Southwest China). J. Appl. Geophys., Vol. 131, pp. 154–162. 2016.
S. S. Uhlemann et al. Integrated time-lapse geoelectrical imaging of wetland hydrological processes. Water Resour. Res., Vol. 52, No. 3, pp. 1607–1625. 2016.
A. Ramzani and A. N. Dehghan. A Geo-Electrical Study to Determine the Geometry of Landslide Using a Physically-Based Model. Indian Geotech. J. 2021 522, Vol. 52, No. 2, pp. 372–380. 2021.
P. Imani, G. Tian, S. Hadiloo, and A. A. El-Raouf. Application of combined electrical resistivity tomography (ERT) and seismic refraction tomography (SRT) methods to investigate Xiaoshan District landslide site: Hangzhou, China. J. Appl. Geophys., Vol. 184, p. 104236. 2021.
S. Rezaei, I. Shooshpasha, and H. Rezaei. Reconstruction of landslide model from ERT, geotechnical, and field data, Nargeschal landslide, Iran. Bull. Eng. Geol. Environ, Vol. 78, No. 5, pp. 3223–3237. 2018.
K. D. Priyono, Jumadi, S. Saputra, and V. N. Fikriyah. Risk Analysis of Landslide Impacts on Settlements in Karanganyar, Central Java, Indonesia. Int. J. GEOMATE, Vol. 19, No. 73, pp. 100–1007. 2020.
Triutomo, B. M. Pengenalan Karakteristik Bencana Dan Upaya Mitigasinya Di Indonesia edisi II. Jakarta: Pelaksana Harian Badan Koordinasi Nasional Penanganan Bencana. 2007.
Karnawati, D. Mekanisme Gerakan Massa Batuan Akibat Gempabumi; Tinjauan dan Analisis Geologi Teknik. Yogyakarta: Pascasarjana Universitas Gadjah Mada Jurusan Teknik Sipil dan Jurusn Teknik Geologi. 2007.
Dewi, K. D. Evaluation of Land Use Change in the Upstream of Ciliwung Watershed to Ensure Sustainability of Water Resources. Asian Journal of Water, Environment and Pollution, Vol 12, No 1, pp. 11-19. 2015.
Izhom, B. Kerentanan Wilayah Tanah Longsor Di Daerah Aliran Cicatih, Kabupaten Sukabumi, Jawa Barat. Depok: Skripsi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Departemen Geografi. Universitas Indonesia. 2012.
Copyright (c) 2024 Nurul Adibah Lutfi, Mustaffa Anjang Ahmad, Putera Agung Maha Agung, Agung Sedayu, Nazirah Muhamad Abdullah
This work is licensed under a Creative Commons Attribution 4.0 International License.