Klasifikasi Pemohon Pinjaman dengan Hyperparameter Tuning dan Teknik Penyeimbangan Data

Authors

  • Donata Yulvida Universitas Widya Dharma Pontianak
  • Stefanie Quinevera Universitas Widya Dharma Pontianak
  • Ricky Mardianto Universitas Widya Dharma Pontianak
  • Steven Joses Universitas Widya Dharma Pontianak

DOI:

https://doi.org/10.52158/krjtrh05

Keywords:

Decision Tree, GridSearchCV, Klasifikasi Pinjaman, Random Forest, Random Oversampling

Abstract

Loan classification is a critical component of credit risk management, as it categorizes loans based on risk levels and supports the financial stability of banks, where loan-related income represents a substantial share of assets. Effective classification aims to ensure secure asset allocation, minimize credit risk, and prevent potential repayment issues. This study enhances loan classification performance through two strategies: hyperparameter optimization of Decision Tree and Random Forest algorithms, and data balancing techniques to address class imbalance. Experimental results show that the Decision Tree achieves 89.21% accuracy with an F1-Score of 70.17%, while the Random Forest demonstrates higher performance, reaching 94.04% accuracy and an F1-Score of 79.75%. Random Oversampling reduces bias toward majority classes by improving model sensitivity, while hyperparameter tuning with GridSearchCV identifies optimal parameter settings, thereby strengthening predictive performance. The findings highlight that combining data balancing with hyperparameter optimization effectively improves accuracy and F1-Scores. These approaches are not limited to the algorithms tested but can also be applied to other classification methods, offering broader potential for enhancing credit risk prediction in banking.

Downloads

Download data is not yet available.

References

[1] Y. Dasari, K. Rishitha, and O. Gandhi, “Prediction of Bank Loan Status Using Machine Learning Algorithms,” Int. J. Comput. Digit. Syst., vol. 14, no. 1, 2023, doi: 10.12785/ijcds/140113.

[2] S. M. Fati, “Machine Learning-Based Prediction Model for Loan Status Approval,” J. Hunan Univ. Nat. Sci., vol. 48, no. 10, 2021.

[3] K. Gautam, A. P. Singh, K. Tyagi, and M. Suresh Kumar, “Loan Prediction using Decision Tree and Random Forest,” Int. Res. J. Eng. Technol., 2020.

[4] A. C. B. Garcia, M. G. P. Garcia, and R. Rigobon, “Algorithmic discrimination in the credit domain: what do we know about it?,” AI Soc., 2023, doi: 10.1007/s00146-023-01676-3.

[5] N. Uddin, M. K. Uddin Ahamed, M. A. Uddin, M. M. Islam, M. A. Talukder, and S. Aryal, “An ensemble machine learning based bank loan approval predictions system with a smart application,” Int. J. Cogn. Comput. Eng., vol. 4, 2023, doi: 10.1016/j.ijcce.2023.09.001.

[6] L. Sathish kumar, V. Pandimurugan, D. Usha, M. Nageswara Guptha, and M. S. Hema, “Random forest tree classification algorithm for predicating loan,” Mater. Today Proc., vol. 57, pp. 2216–2222, Jan. 2022, doi: 10.1016/j.matpr.2021.12.322.

[7] M. Khushi et al., “A Comparative Performance Analysis of Data Resampling Methods on Imbalance Medical Data,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3102399.

[8] D. Ismunandar, M. R. Firdaus, and Y. Alkhalifi, “Penerapan Hyperparameter Machine Learning Dalam Prediksi Gagal Pinjam,” INTI Nusa Mandiri, vol. 19, no. 1, pp. 62–70, 2024, doi: 10.33480/inti.v19i1.5612.

[9] K. Mallikharjuna Rao, G. Saikrishna, and K. Supriya, “Data preprocessing techniques: emergence and selection towards machine learning models - a practical review using HPA dataset,” Multimed. Tools Appl., vol. 82, no. 24, 2023, doi: 10.1007/s11042-023-15087-5.

[10] A. Al-Qerem, G. Al-Naymat, M. Alhasan, and M. Al-Debei, “Default prediction model: The significant role of data engineering in the quality of outcomes,” Int. Arab J. Inf. Technol., vol. 17, no. 4 Special Issue, 2020, doi: 10.34028/iajit/17/4A/8.

[11] A. R. Ismail, N. Z. Abidin, and M. K. Maen, “Systematic Review on Missing Data Imputation Techniques with Machine Learning Algorithms for Healthcare,” Journal of Robotics and Control (JRC), vol. 3, no. 2. 2022. doi: 10.18196/jrc.v3i2.13133.

[12] Z. Wu, “Using Machine Learning Approach to Evaluate the Excessive Financialization Risks of Trading Enterprises,” Comput. Econ., vol. 59, no. 4, 2022, doi: 10.1007/s10614-020-10090-6.

[13] A. Perwitasari, R. Septiriana, and T. Tursina, “Data preparation Structure untuk Pemodelan Prediktif Jumlah Peserta Ajar Matakuliah,” J. Edukasi dan Penelit. Inform., vol. 9, no. 1, p. 7, 2023, doi: 10.26418/jp.v8i3.57321.

[14] J. C. Alejandrino, J. P. Bolacoy, and J. V. B. Murcia, “Supervised and unsupervised data mining approaches in loan default prediction,” Int. J. Electr. Comput. Eng., vol. 13, no. 2, 2023, doi: 10.11591/ijece.v13i2.pp1837-1847.

[15] J. Jemai and A. Zarrad, “Feature Selection Engineering for Credit Risk Assessment in Retail Banking,” Inf., vol. 14, no. 3, 2023, doi: 10.3390/info14030200.

[16] A. Y. Hussein, P. Falcarin, and A. T. Sadiq, “Enhancement performance of random forest algorithm via one hot encoding for IoT IDS,” Period. Eng. Nat. Sci., vol. 9, no. 3, 2021, doi: 10.21533/pen.v9i3.2204.

[17] M. K. Dahouda and I. Joe, “A Deep-Learned Embedding Technique for Categorical Features Encoding,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3104357.

[18] M. Z. Abedin, C. Guotai, P. Hajek, and T. Zhang, “Combining weighted SMOTE with ensemble learning for the class-imbalanced prediction of small business credit risk,” Complex Intell. Syst., vol. 9, no. 4, 2023, doi: 10.1007/s40747-021-00614-4.

[19] S. Hou, Z. Cai, J. Wu, H. Du, and P. Xie, “Applying Machine Learning to the Development of Prediction Models for Bank Deposit Subscription,” Int. J. Bus. Anal., vol. 9, no. 1, 2021, doi: 10.4018/ijban.288514.

[20] X. Li, S. Yi, A. B. Cundy, and W. Chen, “Sustainable decision-making for contaminated site risk management: A decision tree model using machine learning algorithms,” J. Clean. Prod., vol. 371, 2022, doi: 10.1016/j.jclepro.2022.133612.

[21] I. I. Febriansyah, R. Sarno, and R. N. Anggraini, “Decision Tree and Fuzzy Logic in The Audit of Information System for Tax Letter Issuance,” in IES 2022 - 2022 International Electronics Symposium: Energy Development for Climate Change Solution and Clean Energy Transition, Proceeding, 2022. doi: 10.1109/IES55876.2022.9888372.

[22] N. Darapaneni et al., “Tree Based Models: A Comparative and Explainable Study for Credit Default Classification,” in 9th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering, UPCON 2022, 2022. doi: 10.1109/UPCON56432.2022.9986411.

[23] M. R. Machado and S. Karray, “Assessing credit risk of commercial customers using hybrid machine learning algorithms,” Expert Syst. Appl., vol. 200, 2022, doi: 10.1016/j.eswa.2022.116889.

[24] N. Rtayli and N. Enneya, “Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization,” J. Inf. Secur. Appl., vol. 55, 2020, doi: 10.1016/j.jisa.2020.102596.

[25] M. E. Lokanan and K. Sharma, “Fraud prediction using machine learning: The case of investment advisors in Canada,” Mach. Learn. with Appl., vol. 8, 2022, doi: 10.1016/j.mlwa.2022.100269.

Downloads

Published

2025-12-16

How to Cite

[1]
“Klasifikasi Pemohon Pinjaman dengan Hyperparameter Tuning dan Teknik Penyeimbangan Data”, J. Appl. Comput. Sci. Technol., vol. 6, no. 2, pp. 92 – 100 , Dec. 2025, doi: 10.52158/krjtrh05.