Pendekatan Metode Ensemble Learning untuk Prakiraan Cuaca menggunakan Soft Voting Classifier
I will put the dimension here
Abstract
Weather conditions are one of the crucial factors that need attention. Changes in weather conditions significantly impact various activities. Weather condition changes are determined by numerous factors, often occurring within a relatively short period in the atmosphere, such as pressure, wind speed, rainfall, temperature, and other atmospheric phenomena. Issues in weather forecasting arise due to several factors, namely the fluctuating atmospheric conditions. This research proposes the development of a weather forecasting model using the ensemble learning method approach. The weather data used consist of 33746 records with attributes used after preprocessing, namely Temperature, Dew Point, Humidity, Wind Speed, Wind Gust, Pressure, Precipitation, and Condition. Testing in this research employs several single-machine learning methods such as K-Nearest Neighbor (KNN), Logistic Regression, Random Forest, Naive Bayes, and Multi-Layer Perceptron. The Naive Bayes method using default parameters achieves a high accuracy of 99.00%. In the ensemble method, combinations of three methods exhibit excellent accuracy for all combinations. The best combination methods are found in the Soft Voting Classifier method (Random Forest, MLP, Naive Bayes), Soft Voting Classifier (Logistic Regression, MLP, Naive Bayes), and Soft Voting Classifier (Random Forest, KNN, Naive Bayes) with an accuracy of 99.03%.
Downloads
References
[2] A. R. I. Pratama, S. A. Latipah, and B. N. Sari, “Optimasi Klasifikasi Curah Hujan Menggunakan Support Vector Machine (SVM) dan Recursive Feature Elimination (RFE),” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 7, no. 2, pp. 314–324, May 2022, doi: 10.29100/jipi.v7i2.2675.
[3] G. I. Merdekawati and Ismail, “Prediksi Curah Hujan di Jakarta Berbasis Algoritma Levenberg Marquardt,” Jurnal Ilmiah Informatika Komputer, vol. 24, no. 2, pp. 116–128, 2019, doi: 10.35760/ik.2019.v24i2.2366.
[4] A. M. Siregar, “Klasifikasi Untuk Prediksi Cuaca Menggunakan Esemble Learning,” PETIR, vol. 13, no. 2, 2020, doi: 10.33322/petir.v13i2.998.
[5] A. Roy and A. MS. Hendriyawan, “Implementasi Metode Naive Bayes Classifier Untuk Perkitaan Cuaca,” 2019.
[6] I. Intan, S. Aminah Dinayati Ghani, A. T. Koswara, U. Dipa Makassar, K. Arsip Nasional Republik Indonesia, and J. P. Kemerdekaan, “Performance Analysis of Weather Forecasting using Machine Learning Algorithms (Analisis Performansi Prakiraan Cuaca Menggunakan Algoritma Machine Learning),” Jurnal Pekommas, vol. 6, no. 2, 2021, Accessed: Oct. 19, 2023. [Online]. Available: http://dx.doi.org/10.30818/jpkm.2021.206022
[7] F. Hamami and I. A. Dahlan, “Klasifikasi Cuaca Provinsi DKI Jakarta Menggunakan Algoritma Random Forest dengan Teknik Oversampling,” Jurnal Teknoinfo, vol. 16, no. 1, 2022, doi: 10.33365/jti.v16i1.1533.
[8] Utami, D. P. Rini, and E. & Lestari, “Prediksi Cuaca di Kota Palembang Berbasis Supervised Learning Menggunakan Algoritma K-Nearest Neighbour,” JUPITER: Jurnal Penelitian Ilmu Dan Teknologi Komputer, vol. 13, no. 1, 2021.
[9] V. I. Yani, A. Aradea, and H. Mubarok, “Optimasi Prakiraan Cuaca Menggunakan Metode Ensemble pada Naïve Bayes dan C4.5,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 8, no. 3, Dec. 2022, doi: 10.28932/jutisi.v8i3.5455.
[10] S. Kumari, D. Kumar, and M. Mittal, “An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier,” International Journal of Cognitive Computing in Engineering, vol. 2, 2021, doi: 10.1016/j.ijcce.2021.01.001.
[11] M. M. Ahsan, M. A. P. Mahmud, P. K. Saha, K. D. Gupta, and Z. Siddique, “Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance,” Technologies (Basel), vol. 9, no. 3, 2021, doi: 10.3390/technologies9030052.
[12] Alvina Felicia Watratan, Arwini Puspita. B, and Dikwan Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” Journal of Applied Computer Science and Technology, vol. 1, no. 1, pp. 7–14, Jul. 2020, doi: 10.52158/jacost.v1i1.9.
[13] F. R. Suprihati, “Analisis Klasifikasi SMS Spam Menggunakan Logistic Regression,” Jurnal Sistem Cerdas, vol. 4, no. 3, 2021, doi: 10.37396/jsc.v4i3.166.
[14] S. Sudianto, A. D. Sripamuji, I. Ramadhanti, R. R. Amalia, J. Saputra, and B. Prihatnowo, “Penerapan Algoritma Support Vector Machine dan Multi-Layer Perceptron pada Klasisifikasi Topik Berita,” Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, vol. 11, no. 2, pp. 84–91, 2022, [Online]. Available: https://ejournal.undiksha.ac.id/index.php/janapati/article/view/44151
[15] K. Sumwiza, C. Twizere, G. Rushingabigwi, P. Bakunzibake, and P. Bamurigire, “Enhanced cardiovascular disease prediction model using random forest algorithm,” Inform Med Unlocked, vol. 41, 2023, doi: 10.1016/j.imu.2023.101316.
[16] O. Saeful Bachri and R. M. Herdian Bhakti, “Penentuan Status Stunting pada Anak dengan Menggunakan Algoritma KNN,” Jurnal Ilmiah Intech : Information Technology Journal of UMUS, vol. 3, no. 02, pp. 130–137, Nov. 2021, doi: 10.46772/intech.v3i02.533.
[17] O. Iparraguirre-Villanueva, K. Espinola-Linares, R. O. Flores Castañeda, and M. Cabanillas-Carbonell, “Application of Machine Learning Models for Early Detection and Accurate Classification of Type 2 Diabetes,” Diagnostics, vol. 13, no. 14, 2023, doi: 10.3390/diagnostics13142383.
[18] B. Prasojo and E. Haryatmi, “Analisa Prediksi Kelayakan Pemberian Kredit Pinjaman dengan Metode Random Forest,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 7, no. 2, pp. 79–89, Sep. 2021, doi: 10.25077/teknosi.v7i2.2021.79-89.
[19] N. M. Lutimath, N. Sharma, and B. K. Byregowda, “Prediction of Heart Disease using Biomedical Data through Machine Learning Techniques,” EAI Endorsed Trans Pervasive Health Technol, vol. 7, no. 29, 2021, doi: 10.4108/eai.30-8-2021.170881.
[20] A. Ridwan, “Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus,” Jurnal SISKOM-KB (Sistem Komputer dan Kecerdasan Buatan), vol. 4, no. 1, 2020, doi: 10.47970/siskom-kb.v4i1.169.
[21] U. Nagavelli, D. Samanta, and P. Chakraborty, “Machine Learning Technology-Based Heart Disease Detection Models,” J Healthc Eng, vol. 2022, 2022, doi: 10.1155/2022/7351061.
[22] M. S. Wibawa and I. M. D. Maysanjaya, “Multi Layer Perceptron dan Principal Component Analysis untuk Diagnosis Kanker Payudara,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 7, no. 1, p. 90, May 2018, doi: 10.23887/janapati.v7i1.12909.
[23] G. Akilandasowmya, G. Nirmaladevi, S. U. Suganthi, and A. Aishwariya, “Skin cancer diagnosis: Leveraging deep hidden features and ensemble classifiers for early detection and classification,” Biomed Signal Process Control, 2023, doi: 10.1016/j.bspc.2023.105306.
[24] N. Agustina and C. N. Ihsan, “Pendekatan Ensemble untuk Analisis Sentimen Covid19 Menggunakan Pengklasifikasi Soft Voting,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 10, no. 2, p. 263, Apr. 2023, doi: 10.25126/jtiik.20231026215.
Copyright (c) 2024 Steven Joses
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Pernyataan Hak Cipta dan Lisensi
Dengan mengirimkan manuskrip ke Journal of Applied Computer Science and Technology (JACOST), penulis setuju dengan kebijakan ini. Tidak diperlukan persetujuan dokumen khusus.
- Hak cipta pada setiap artikel adalah milik penulis.
- Penulis mempertahankan semua hak mereka atas karya yang diterbitkan, tak terbatas pada hak-hak yang diatur dalam laman ini.
- Penulis mengakui bahwa Journal of Applied Computer Science and Technology (JACOST) sebagai yang pertama kali mempublikasikan dengan lisensi Creative Commons Atribusi 4.0 Internasional (CC BY-SA).
- Penulis dapat memasukan tulisan secara terpisah, mengatur distribusi non-ekskulif dari naskah yang telah terbit di jurnal ini kedalam versi yang lain (misal: dikirim ke respository institusi penulis, publikasi kedalam buku, dll), dengan mengakui bahwa naskah telah terbit pertama kali pada Journal of Applied Computer Science and Technology (JACOST);
- Penulis menjamin bahwa artikel asli, ditulis oleh penulis yang disebutkan, belum pernah dipublikasikan sebelumnya, tidak mengandung pernyataan yang melanggar hukum, tidak melanggar hak orang lain, tunduk pada hak cipta yang secara eksklusif dipegang oleh penulis.
- Jika artikel dipersiapkan bersama oleh lebih dari satu penulis, setiap penulis yang mengirimkan naskah menjamin bahwa dia telah diberi wewenang oleh semua penulis bersama untuk menyetujui hak cipta dan pemberitahuan lisensi (perjanjian) atas nama mereka, dan setuju untuk memberi tahu rekan penulis persyaratan kebijakan ini. Journal of Applied Computer Science and Technology (JACOST) tidak akan dimintai pertanggungjawaban atas apa pun yang mungkin timbul karena perselisihan internal penulis.
Lisensi :
Journal of Applied Computer Science and Technology (JACOST) diterbitkan berdasarkan ketentuan Lisensi Creative Commons Atribusi 4.0 Internasional (CC BY-SA). Lisensi ini mengizinkan setiap orang untuk :.
- Berbagi — menyalin dan menyebarluaskan kembali materi ini dalam bentuk atau format apapun;
- Adaptasi — menggubah, mengubah, dan membuat turunan dari materi ini untuk kepentingan apapun.
Lisensi :
-
Atribusi — Anda harus mencantumkan nama yang sesuai, mencantumkan tautan terhadap lisensi, dan menyatakan bahwa telah ada perubahan yang dilakukan. Anda dapat melakukan hal ini dengan cara yang sesuai, namun tidak mengisyaratkan bahwa pemberi lisensi mendukung Anda atau penggunaan Anda.
-
BerbagiSerupa — Apabila Anda menggubah, mengubah, atau membuat turunan dari materi ini, Anda harus menyebarluaskan kontribusi Anda di bawah lisensi yang sama dengan materi asli.