Perbandingan Metode Random Forest, Convolutional Neural Network, dan Support Vector Machine Untuk Klasifikasi Jenis Mangga

  • Ricky Mardianto Institut Teknologi Sepuluh Nopember
  • Stefanie Quinevera Institut Teknologi Sepuluh Nopember
  • Siti Rochimah Institut Teknologi Sepuluh Nopember
DOI: https://doi.org/10.52158/jacost.v5i1.742
I will put the dimension here
Keywords: classification, image processing, mango, Convolutional Neural Network, Random Forest, Support Vector Machine

Abstract

Mango is a fruit known as the "King of Fruit" due to its rich flavor, vast variability, and high nutritional value. Classifying mangoes based on their external appearance is the initial step in the process of identifying and categorizing mango types conventionally. The classification process can be performed by examining external features such as fruit color, shape, and size. Classifying different types of mango fruits accurately can assist researchers in developing superior varieties and also aid farmers for cultivation purposes, sales, distribution, and selecting the right varieties for local growth and weather conditions. This research conducts the classification of mango types based on color from mango images using machine learning. The study compares three methods, namely Random Forest, Support Vector Machine (SVM), and Convolutional Neural Network (CNN), to determine the best method for classifying mango types based on their images. The dataset underwent preprocessing, where image sizes were standardized to 300 x 300 pixels, and color was changed to grayscale. The dataset was then divided into training and testing data with a ratio of 70:30. Subsequently, the dataset was processed using three methods, and their accuracy results were compared. The findings indicate that the Random Forest method yielded the highest accuracy compared to the other methods, with an accuracy rate of 96%. The accuracy of the SVM method was 95%, and the accuracy of the CNN method was 33%. From these results, it can be concluded that the Random Forest method is highly effective for classifying mango types based on their image compared to SVM and CNN methods.

 

Downloads

Download data is not yet available.

References

M. W. Khan, Z. Hussain, and I. Ghafoor, “Mango Fruit Orchards Infestation: A Case Study On Mango Fruits In Pakistan,” 2023. [Online]. Available: http://xisdxjxsu.asia

V. Farina, C. Gentile, G. Sortino, G. Gianguzzi, E. Palazzolo, and A. Mazzaglia, “Tree‐Ripe Mango Fruit: Physicochemical Characterization, Antioxidant Properties And Sensory Profile Of Six Mediterranean⇂Grown Cultivars,” Agronomy, vol. 10, no. 6, 2020, doi: 10.3390/agronomy10060884.

E. M. Yahia, J. de J. Ornelas-Paz, J. K. Brecht, P. García-Solís, and M. E. Maldonado Celis, “The Contribution of Mango Fruit (Mangifera Indica l.) To human nutrition and health,” Arabian Journal of Chemistry, vol. 16, no. 7. 2023. doi: 10.1016/j.arabjc.2023.104860.

H. M. Rizwan Iqbal and A. Hakim, “Classification and Grading of Harvested Mangoes Using Convolutional Neural Network,” Int. J. Fruit Sci., vol. 22, no. 1, 2022, doi: 10.1080/15538362.2021.2023069.

H. Tang, Z. Rasool, A. I. Khan, A. A. Khan, M. A. Khan, and G. A. Azaz, “The Impact of Private Standards on Corporate Social Responsibility Compliance and Rural Workers’ Motivation in Developing Countries: A Study of Mango Farms in Pakistan,” Int. J. Food Sci., vol. 2021, 2021, doi: 10.1155/2021/9985784.

I. A. Sabir, S. Ahmad, M. Nafees, A. S. Khan, Maryam, and I. Ahmad, “Trade Potential Evaluation of Indigenous and Exotic Mango Genotypes Through Physico-Chemical And Sensory Attributes,” Sarhad J. Agric., vol. 34, no. 3, 2018, doi: 10.17582/journal.sja/2018/34.3.680.689.

S. Zahoor, F. Anwar, R. Qadir, W. Soufan, and M. Sakran, “Physicochemical Attributes and Antioxidant Potential of Kernel Oils from Selected Mango Varieties,” ACS Omega, vol. 8, no. 25, 2023, doi: 10.1021/acsomega.3c01155.

J. Jamaludin, C. Rozikin, and A. S. Y. Irawan, “Klasifikasi Jenis Buah Mangga dengan Metode Backpropagation,” Techné J. Ilm. Elektrotek., vol. 20, no. 1, 2021, doi: 10.31358/techne.v20i1.231.

A. Raghavendra, D. S. Guru, M. K. Rao, and R. Sumithra, “Hierarchical Approach for Ripeness Grading of Mangoes,” Artif. Intell. Agric., vol. 4, 2020, doi: 10.1016/j.aiia.2020.10.003.

D. Worasawate, P. Sakunasinha, and S. Chiangga, “Automatic Classification of the Ripeness Stage of Mango Fruit Using a Machine Learning Approach,” AgriEngineering, vol. 4, no. 1, pp. 32–47, Mar. 2022, doi: 10.3390/agriengineering4010003.

D. Hidayat, “Klasifikasi Jenis Mangga Berdasarkan Bentuk dan Tekstur Daun Menggunakan Metode Convolutional Neural Network (CNN),” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 1, 2022, doi: 10.31539/intecoms.v5i1.3401.

S. Devella, Y. Yohannes, and F. N. Rahmawati, “Implementasi Random Forest Untuk Klasifikasi Motif Songket Palembang Berdasarkan SIFT,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 310–320, Aug. 2020, doi: 10.35957/jatisi.v7i2.289.

M. Ichwan, I. A. Dewi, and Z. M. S, “Klasifikasi Support Vector Machine (SVM) Untuk Menentukan TingkatKemanisan Mangga Berdasarkan Fitur Warna,” MIND J., vol. 3, no. 2, 2019, doi: 10.26760/mindjournal.v3i2.16-23.

Y. Amrozi, D. Yuliati, A. Susilo, N. Novianto, and R. Ramadhan, “Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 3, pp. 394–399, Dec. 2022, doi: 10.32736/sisfokom.v11i3.1502.

Shahane, Saurabh, “Mango Varieties Classification and Grading,” https://www.kaggle.com. Accessed: Sep. 14, 2023. [Online]. Available: https://www.kaggle.com/datasets/saurabhshahane/mango-varieties-classification

H. Nhat-Duc and T. Van-Duc, “Comparison of histogram-based gradient boosting classification machine, random Forest, and deep convolutional neural network for pavement raveling severity classification,” Autom. Constr., vol. 148, p. 104767, Apr. 2023, doi: 10.1016/J.AUTCON.2023.104767.

F. Hamami and A. Dahlan, “Klasifikasi Cuaca Provinsi Dki Jakarta Menggunakan Algoritma Random Forest Dengan Teknik Oversampling,” 2022.

K. P. Siwilopo and H. Marcos, “Membandingkan Klasifikasi Pada Buah Jeruk Menggunakan Metode Convolutional Neural Network Dan K-Nearest Neighbor,” KOMPUTA J. Ilm. Komput. dan Inform., vol. 12, no. 1, 2023.

J. Kusuma, Rubianto, R. Rosnelly, Hartono, and B. H. Hayadi, “Klasifikasi Penyakit Daun Pada Tanaman Jagung Menggunakan Algoritma Support Vector Machine, K-Nearest Neighbors dan Multilayer Perceptron,” J. Appl. Comput. Sci. Technol., vol. 4, no. 1, 2023, doi: 10.52158/jacost.v4i1.484.

V. I. Yani, A. Aradea, and H. Mubarok, “Optimasi Prakiraan Cuaca Menggunakan Metode Ensemble pada Naïve Bayes dan C4.5,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 3, Dec. 2022, doi: 10.28932/jutisi.v8i3.5455.

K. B. Dasari and N. Devarakonda, “Detection of different DDoS attacks using machine learning classification Algorithms,” Ing. des Syst. d’Information, vol. 26, no. 5, 2021, doi: 10.18280/isi.260505.

N. Arifin, U. Enri, and N. Sulistiyowati, “Penerapan Algoritma Support Vector Machine (SVM) dengan TF-IDF N-Gram untuk Text Classification,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 6, no. 2, 2021, doi: 10.30998/string.v6i2.10133.

R. Siringoringo, “Peningkatan Performa Cluster Fuzzy C-Means Pada Pengklasteran Sentimen Menggunakan Particle Swarm Optimization,” vol. 6, no. 4, pp. 349–354, 2018, doi: 10.25126/jtiik.2018561090.

Published
2024-05-12
How to Cite
[1]
R. Mardianto, Stefanie Quinevera, and S. Rochimah, “Perbandingan Metode Random Forest, Convolutional Neural Network, dan Support Vector Machine Untuk Klasifikasi Jenis Mangga”, J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 63 - 71, May 2024.
Section
Articles
Bookmark and Share