Klasifikasi Multilabel Pada Gaya Belajar Siswa Sekolah Dasar Menggunakan Algoritma Machine Learning

  • I Kadek Nicko Ananda Universitas Pendidikan Ganesha
  • Ni Putu Novita Puspa Dewi Universitas Pendidikan Ganesha
  • Ni Wayan Marti Universitas Pendidikan Ganesha
  • Luh Joni Erawati Dewi Universitas Pendidikan Ganesha
DOI: https://doi.org/10.52158/jacost.v5i2.940
I will put the dimension here
Keywords: Machine Learning, Gaya Belajar, Klasifikasi Multilabel, Data Set of Learning Style Preference, Decision Tree

Abstract

Learning style plays a very important role in determining the success of a person's learning process. An individual generally has a combination of all three existing learning styles including Visual, Auditorial, and Kinesthetic. However, what distinguishes the abilities of individuals from each other is how the dominant combination of each learning style is or not, so it is important to identify. This study aims to build a multi-label classification model to classify the learning styles of elementary school students. The machine learning algorithms used to build the model are Decision Tree, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). The performance of these four models is compared using the Hamming Loss, Accuracy, Precision, Recall, and F1-Score performance metrics. The Classifier Chains method is implemented to provide capabilities to KNNs and SVMs that cannot directly handle multi-label classification problems. The dataset used in this study is the Data Set of Learning Style Preference. The separation of the dataset was made into three different forms of data sizes, including: Data I: 90% training, 10% testing; Data II: 80% training 20% testing; and Data III: 70% training 30% testing. Cross-validation using K-Fold Cross Validation with a k-value of 10-fold was also applied to the training data. Based on testing, the best performance was obtained on the Decision Tree model with a hamming loss of 0.014, which indicates a very low prediction error rate per individual label.  A recall value of 99% indicates that the model is able to detect almost all positive labels correctly, and an F1-score of 98% indicates that the model has excellent and balanced performance, without bias against both positive and negative label predictions. The performance of the Decision Tree model was followed by MLP, SVM, and KNN which showed lower results.

Downloads

Download data is not yet available.

References

I. Maryani, L. Fatmawati, V. Y. Erviana, M. N. Wangid, and A. Mustadi, Model Intervensi Gangguan Kesulitan Belajar. Yogyakarta: K-Media, 2018.

M. R. Sofian, “Psikoedukasi Pentingnya Mengetahui Gaya Belajar Siswa,” Abdima Jurnal Pengabdian Mahasiswa, vol. 2, no. 1, pp. 1609–1615, Feb. 2023.

M. Fendrik, D. F. Putri, P. H. Pebriana, G. S. Sidik, and D. Ramdhani, “Analisis Kecenderungan Gaya Belajar Siswa Sekolah Dasar,” Jurnal Pendidikan dan Konseling, vol. 4, no. 3, pp. 793–809, Jun. 2022, doi: https://doi.org/10.31004/jpdk.v4i3.4094.

V. Y. Erviana and S. Sukirno, “Data Set of Learning Style Preference,” Mendeley Data, vol. V2, Jul. 2020, doi: 10.17632/mtvfdwm3dt.2.

V. Y. Erviana and S. Fajaruddin, “Exploring Diverse Learning Styles In Elementary Schools: A Study On Student Preferences,” International Journal Of Education And Learning, vol. 5, no. 2, pp. 124–131, Aug. 2023, doi: https://doi.org/10.31763/ijele.v5i2.1241.

S. M. Rezkia, “Metode Pengolahan Data: Tahapan Wajib Yang Dilakukan Sebelum Analisis Data,” DQLab, vol. 6, no. 29, Jun. 2021, [Online]. Available: https://dqlab.id/metode-pengolahan-data-tahapan-wajib-yang-dilakukan-sebelum-analisis-data

G. N. Kurniawati, “Apa itu Machine Learning?,” DQLab, vol. 1, no. 7, Jan. 2021.

International Educational Data Mining Society, “Educational Data Mining,” International Educational Data Mining. [Online]. Available: https://educationaldatamining.org/

S. A. A. Kharis and A. H. A. Zili, “Learning Analytics dan Educational Data Mining pada Data Pendidikan,” Jurnal Riset Pembelajaran Matematika Sekolah, vol. 6, no. 1, pp. 12–22, Mar. 2022, doi: https://doi.org/10.21009/jrpms.061.02.

Oscario, Jasmir, and Y. Novianto, “Penerapan Algoritma C4.5 Untuk Memprediksi Kecocokan Gaya Belajar Bagi Siswa Siswi Sekolah Dasar (Studi Kasus : SD Sariputra Jambi),” Processor: Jurnal Ilmiah Sistem Informasi, Teknologi Informasi dan Sistem Komputer, vol. 14, no. 2, pp. 141–152, Oct. 2019, doi: https://doi.org/10.33998/processor.2019.14.2.637.

A. T. Jatmiko, W. S. Wardhono, and S. H. Wijoyo, “Analisis Komparasi Algoritma C4.5 dan Naive Bayes dalam Kasus Klasifikasi Kecenderungan Gaya Belajar Visual Auditori Kinestetik (VAK),” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 7, pp. 3507–3516, Jul. 2023.

A. K. Darmawan, Kurdianto, Bakir, and M. Makruf, “Deteksi Gaya Belajar Siswa SMA pada Virtual Based Learning Environment (VBLE) dengan Decision Tree C4.5 dan Naive Bayes,” Kajian Ilmiah Informatika dan Komputer, vol. 3, no. 5, pp. 532–544, Apr. 2023, doi: https://doi.org/10.30865/klik.v3i5.760.

B. D. Pranata, U. Mahdiyah, and P. Kasih, “Pemodelan Gaya Belajar Siswa dengan Menggunakan Support Vector Machine,” Nusantara of Engineering (NOE), vol. 6, no. 2, pp. 144–150, Oct. 2023, doi: 10.29407/noe.v6i2.20884.

I. A. Prasetyo, H. Mustofa, S. Supriadi, R. H. Prasetyo, M. Y. L, and Fitriyani, “Metode Decision Tree Dalam Pemilihan Gaya Belajar Pada Siswa Sekolah Dasar,” Jurnal Ilmiah Sains dan Teknologi Industri, vol. 5, no. 1, pp. 21–29, Jul. 2021, doi: https://doi.org/10.32524/saintek.v5i1.248.

E. Rizkyani, I. Ernawati, and N. Chamidah, “Klasifikasi Multi-Label Menggunakan Metode Multi-Label K-Nearest Neighbors Pada Penyakit Kanker Serviks,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 7, no. 4, pp. 1281–1293, Nov. 2022, doi: 10.29100/jipi.v7i4.3260.

A. Hanafi, Adiwijaya, and W. Astuti, “Klasifikasi Multi Label Pada Hadis Bukhari Terjemahan Bahasa Indonesia Menggunakan Mutual Information dan K-Nearest Neighbors,” SISFOKOM (Sistem Informasi dan Komputer, vol. 9, no. 3, pp. 357–364, 2020, doi: https://doi.org/10.32736/sisfokom.v9i3.980.

Sudianto, A. D. Sripamuji, I. Ramadhanti, R. R. Amalia, J. Saputra, and B. Prihatnowo, “Penerapan Algoritma Support Vector Machine dan Multi-Layer Perceptron Pada Klasifikasi Topik Berita,” Jurnal Nasional Pendidikan Informatika , vol. 11, no. 2, pp. 84–91, Jul. 2022.

L. G. Irham, Adiwijaya, and U. N. Wisesty, “Klasifikasi Berita Bahasa Indonesia Menggunakan Mutual Information dan Support Vector Machine,” Jurnal Media Informatika Budidarma, vol. 3, no. 4, pp. 284–292, Oct. 2019, doi: http://dx.doi.org/10.30865/mib.v3i4.1410.

J. Kusuma, R. Rosnelly, Hartono, and B. H. Hayadi, “Klasifikasi Penyakit Daun Tanaman Jagung Menggunakan Algoritma Support Vector Machine, K-Nearest Neighbors dan Multilayer Perceptron,” Journal of Applied Computer Science and Technology, vol. 4, no. 1, pp. 1–6, Jun. 2022, doi: https://doi.org/10.52158/jacost.v4i1.484.

I. Maryani, L. Fatmawati, V. Y. Erviana, D. Kartika, M. N. Wangid, and A. Mustadi, “Validity and reliability of learning style scale of the elementary school students,” Proceedings The 2017 International Conference on Research in Education-Sanata Dharma University, pp. 364–382, 2017.

M. Heydarian, T. E. Doyle, and R. Samavi, “MLCM: Multi-Label Confusion Matrix,” IEEE Access, vol. 10, pp. 19083–19095, 2022, doi: 10.1109/ACCESS.2022.3151048.

D. Feby, “Tipe Encoding di Machine Learning Categorical Data,” DQLab. [Online]. Available: https://dqlab.id/tipe-encoding-di-machine-learning-categorical-data

H. Tripathi, “What Is Balanced And Imbalanced Dataset?,” Medium. [Online]. Available: https://medium.com/analytics-vidhya/what-is-balance-and-imbalance-dataset-89e8d7f46bc5

Published
2024-12-31
How to Cite
[1]
I Kadek Nicko Ananda, Ni Putu Novita Puspa Dewi, Ni Wayan Marti, and Luh Joni Erawati Dewi, “Klasifikasi Multilabel Pada Gaya Belajar Siswa Sekolah Dasar Menggunakan Algoritma Machine Learning”, J. Appl. Comput. Sci. Technol., vol. 5, no. 2, pp. 144 - 154, Dec. 2024.
Bookmark and Share