Peramalan Harga Cabai Rawit Merah Menggunakan Attention Mechanism Berbasis Long Short-Term Memory

  • Wina Witanti Universitas Jenderal Achmad Yani
  • Setyo Arie Anggara Universitas Jenderal Achmad Yani
  • Melina Melina Universitas Jenderal Achmad Yani
DOI: https://doi.org/10.52158/jacost.v5i2.875
I will put the dimension here
Keywords: attention mechanisms, cabai rawit merah, LSTM, peramalan, harga

Abstract

Red cayenne pepper is a commodity that has important economic value in Indonesia, especially in West Java Province. Cayenne pepper often experiences significant price fluctuations which can cause inflation. In 2022 there will be the highest inflation in West Java in the last eight years due to increased commodity prices, including cayenne pepper. There needs to be an effort to maintain the stability of the price of red cayenne pepper in West Java. This research aims to create a price forecasting system for red cayenne peppers in West Java by comparing two deep learning approaches, namely Long-Short Term Memory (LSTM) and Long-Short Term Memory with Attention Mechanism (LSTM-Attention-LSTM) to obtain high accuracy in predicting the price of red cayenne pepper. The results of this research show that the LSTM model using 3 hidden layers, 100 neurons, 128 dense, 1 dense, and 32 batch sizes, produces Mean Absolute Error (MAE) values ​​of 0.023, Root Mean Square Error (RMSE) of 0.152, and Mean Absolute Percentage Error (MAPE) is 3.68%. Meanwhile, the LSTM-Attention-LSTM model with the same configuration produces an MAE value of 0.017, RMSE of 0.130, and MAPE of 2.74%. The results of this research can be a reference for the community and government in maintaining price stability for cayenne pepper in West Java.

Downloads

Download data is not yet available.

References

S. S. Mas’ud, SE, M.Si, Sri Wahyuningsih, STATISTIK KONSUMSI PANGAN 2023. Badan Pusat Statistik (BPS), 2023.

Y. J. Siregar, R. Hartono, and A. E. Hardana, “Peramalan Harga Cabai Rawit Di Kota Malang Dengan Metode Holt-Winters Exponential Smoothing,” Agricore J. Agribisnis dan Sos. Ekon. Pertan. Unpad, vol. 6, no. 2, 2022, doi: 10.24198/agricore.v6i2.34778.

I. Marina, D. Sukmawati, E. Juliana, and Z. N. Safa, “Dinamika Pasar Komoditas Pangan Strategis: Analisis Fluktuasi Harga Dan Produksi,” Paspalum J. Ilm. Pertan., vol. 12, no. 1, p. 160, 2024, doi: 10.35138/paspalum.v12i1.700.

S. Kasus et al., “Peramalan Harga Aneka Cabai Menggunakan MetodeLong Short Term Memory (LSTM),” Semin. Nas. Stat. Aktuaria Ii, 2023, [Online]. Available: https://prosidingsnsa.statistics.unpad.ac.id/

P. S. Agribisnis and U. J. Soedirman, “Pengaruh Fluktuasi Harga Cabai Rawit Merah Terhadap Inflasi di Kabupaten Banyumas,” vol. 10, no. 2020, pp. 1866–1877, 2024.

H. Ihsan, R. Syam, and F. Ahmad, “Peramalan Penjualan dengan Metode Exponential Smoothing (Studi Kasus : Penjualan Bakso Kemasaan/Kiloan Rumah Bakso Bang Ipul),” J. Math. Comput. Stat., vol. 1, no. 1, p. 1, 2019, doi: 10.35580/jmathcos.v1i1.9168.

M. Melina, Sukono, H. Napitupulu, and N. Mohamed, “Modeling of Machine Learning-Based Extreme Value Theory in Stock Investment Risk Prediction: A Systematic Literature Review,” Big Data, Jan. 2024, doi: 10.1089/big.2023.0004.

P. G. Zhang, “Time series forecasting using a hybrid ARIMA and neural network model,” Neurocomputing, vol. 50, pp. 159–175, 2003, doi: 10.1016/S0925-2312(01)00702-0.

G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks: The state of the art,” Int. J. Forecast., vol. 14, no. 1, pp. 35–62, 1998, doi: 10.1016/S0169-2070(97)00044-7.

C. K. Poetra, S. F. Pane, and N. S. Fatonah, “Meningkatkan Akurasi Long-Short Term Memory (LSTM) pada Analisis Sentimen Vaksin Covid-19 di Twitter dengan Glove,” J. Telemat., vol. 16, no. 2, pp. 85–90, 2022, doi: 10.61769/telematika.v16i2.400.

M. Mukhlis, A. Kustiyo, and A. Suharso, “Peramalan Produksi Pertanian Menggunakan Model Long Short-Term Memory,” Bina Insa. Ict J., vol. 8, no. 1, p. 22, 2021, doi: 10.51211/biict.v8i1.1492.

R. Wen, K. Torkkola, B. Narayanaswamy, and D. Madeka, “A Multi-Horizon Quantile Recurrent Forecaster,” no. Nips 2017, 2017, [Online]. Available: http://arxiv.org/abs/1711.11053

Melina, Sukono, H. Napitupulu, and N. Mohamed, “A Conceptual Model of Investment-Risk Prediction in the Stock Market Using Extreme Value Theory with Machine Learning: A Semisystematic Literature Review,” Risks, vol. 11, no. 3, 2023, doi: 10.3390/risks11030060.

R. M. S. Adi and S. Sudianto, “Prediksi Harga Komoditas Pangan Menggunakan Algoritma Long Short-Term Memory (LSTM),” Build. Informatics, Technol. Sci., vol. 4, no. 2, pp. 1137–1145, 2022, doi: 10.47065/bits.v4i2.2229.

A. Restu, H. Dwika, and D. Avianto, “Implementasi Algoritma LSTM untuk Prediksi Harga Cabai Merah Keriting di Yogyakarta,” vol. 5, no. 1, pp. 635–648, 2024.

M. David, I. Cholissodin, and N. Yudistira, “Prediksi Harga Cabai menggunakan Metode Long-Short Term Memory (Case Study : Kota Malang),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 3, pp. 1214–1219, 2023, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12406

Fahmi Yusron Fiddin, A. Komarudin, and M. Melina, “Chatbot Informasi Penerimaan Mahasiswa Baru Menggunakan Metode FastText dan LSTM,” J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 33–39, 2024, doi: 10.52158/jacost.v5i1.648.

I. Alexander, M. Khairani, and others, “Penerapan Metode Interpolasi Linear dan Geometric Mean Filter Pada Citra Resolusi Rendah Hasil Resampling,” J. Ilmu Komput. dan Sist. Inf., vol. 3, no. 1, pp. 72–86, 2024.

M. A. R. Suleman and S. Shridevi, “Short-Term Weather Forecasting Using Spatial Feature Attention Based LSTM Model,” IEEE Access, vol. 10, no. August, pp. 82456–82468, 2022, doi: 10.1109/ACCESS.2022.3196381.

X. Wen and W. Li, “Time Series Prediction Based on LSTM-Attention-LSTM Model,” IEEE Access, vol. 11, no. April, pp. 48322–48331, 2023, doi: 10.1109/ACCESS.2023.3276628.

I. Indriyanti, N. Ichsan, H. Fatah, T. Wahyuni, and E. Ermawati, “Implementasi Orange Data Mining Untuk Prediksi Harga Bitcoin,” J. Responsif Ris. Sains dan Inform., vol. 4, no. 2, pp. 118–125, 2022, doi: 10.51977/jti.v4i2.762.

Y. Dai, Q. Zhou, M. Leng, X. Yang, and Y. Wang, “Improving the Bi-LSTM model with XGBoost and attention mechanism: A combined approach for short-term power load prediction,” Appl. Soft Comput., vol. 130, p. 109632, 2022, doi: 10.1016/j.asoc.2022.109632.

H. W. Herwanto, T. Widiyaningtyas, and P. Indriana, “Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 4, p. 364, 2019, doi: 10.22146/jnteti.v8i4.537.

I. Nabillah and I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,” JOINS (Journal Inf. Syst., vol. 5, no. 2, pp. 250–255, 2020, doi: 10.33633/joins.v5i2.3900.

Y. Bai et al., “Understanding and Improving Early Stopping for Learning with Noisy Labels,” Adv. Neural Inf. Process. Syst., vol. 29, no. NeurIPS, pp. 24392–24403, 2021.

L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory pada Data Time Series untuk Memprediksi Penjualan Produk PT. Metiska Farma,” J. Nas. Pendidik. Tek. Inform., vol. 8, no. 3, pp. 184–196, 2019.

Published
2024-12-31
How to Cite
[1]
W. Witanti, S. Arie Anggara, and M. Melina, “Peramalan Harga Cabai Rawit Merah Menggunakan Attention Mechanism Berbasis Long Short-Term Memory”, J. Appl. Comput. Sci. Technol., vol. 5, no. 2, pp. 128 -135, Dec. 2024.
Bookmark and Share