Implementasi Algoritma Support Vector Machine (SVM) Untuk Klasifikasi Penyakit Stroke

  • Danis Rifa Nurqotimah Institut Teknologi, Sains, dan Kesehatan RS.DR.Soepraoen Kesdam V/BRW
  • Ahsanun Naseh Khudori Institut Teknologi, Sains, dan Kesehatan RS. DR. Soepraoen Kesdam V/BRW
  • Risqy Siwi Pradini Institut Teknologi, Sains, dan Kesehatan RS. DR. Soepraoen Kesdam V/BRW
DOI: https://doi.org/10.52158/jacost.v5i2.817
I will put the dimension here
Keywords: stroke, support vector machine, klasifikasi

Abstract

Stroke or known as Cerebrovascular Accident (CVA) is a functional disorder caused by impaired blood flow function from within the human brain. Stroke carries a high risk of brain damage, paralysis, speech disorders, visual impairment, even death. Stroke is one of 10 life-threatening diseases in Indonesia. Classification is one of a few methods in predicting stroke symptoms with the aim of obtaining accurate prediction of disease. The researchers implemented a method to classify stroke with the Support Vector Machine (SVM) algorithm. The SVM is a learning method used in medical diagnosis for classification, the researchers processed data sets using the Orange tool. The research applied cross validation techniques to improve the accuracy of the model. The study used data sets from the data.world.com site with a total of 40,910 data consisting of 11 attributes. In this process, 80% of the training data and 20% of the test data are used. Using the Orange tool, the study managed to classify stroke disease well using the RBF kernel with cross validation techniques resulting in an accuracy of 94.8%. The results of this study can be concluded that the stroke classification model developed has excellent performance. Overall, these results indicate that the Stroke classification model developed is highly reliable and effective, with excellent ability to detect stroke cases and provide accurate predictions. Making better and quicker medical judgments can be aided by using this approach to diagnose strokes.

Downloads

Download data is not yet available.

References

Patmawati, “Prediksi Penyakit Stroke Menggunakan Support Vector Machine (Svm),” Bull. Netw. Eng. Informatics, vol. 1, no. 1, pp. 12–17, 2023, [Online]. Available: https://bufnets.tech/index.php/bufnets/article/vi ew/5/11

N. Permatasari, “Perbandingan Stroke Non Hemoragik dengan Gangguan Motorik Pasien Memiliki Faktor Resiko Diabetes Melitus dan Hipertensi,” J. Ilm. Kesehat. Sandi Husada, vol. 11, no. 1, pp. 298–304, 2020, doi: 10.35816/jiskh.v11i1.273.

A. Byna and M. Basit, “Penerapan Metode Adaboost Untuk Mengoptimasi Prediksi Penyakit Stroke Dengan Algoritma Naïve Bayes,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 3, pp. 407–411, 2020, doi: 10.32736/sisfokom.v9i3.1023.

R. L. Smanjuntak, “Komparasi Algoritma KNN dan SVM dalam Memprediksi Penyakit Stroke,” vol. 3, no. 3, pp. 60–74, 2023.

R. Adriadi, R. Tribuana, and A. W. Rahmanzah, “Edukasi Bahaya Stroke Untuk Meningkatkan Kualitas Hidup Masyarakat Di Desa Bumi Ayu Rt 17 Rw 04 Kecamatan Selebar Kota Bengkulu,” J. Ilm. Mhs. Kuliah Kerja Nyata, vol. 2, no. 1, pp. 123–126, 2022, doi: 10.36085/jimakukerta.v2i1.3335.

D. Mualfah, W. Fadila, and R. Firdaus, “Teknik SMOTE untuk Mengatasi Imbalance Data pada Deteksi Penyakit Stroke Menggunakan Algoritma Random Forest,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 2, pp. 107–113, 2022, doi: 10.37859/coscitech.v3i2.3912.

E. R. Pambudi, Sriyanto, and Firmansyah, “Klasifikasi Penyakit Stroke Menggunakan Algoritma Decision Tree C.45,” Ijccs, vol. 16, No.02, no. x, pp. 221–226, 2022.

I. Iqbal and Z. Zahrah, “Sistem Pakar Diagnosa Gejala Awal Penyakit Stroke Dengan Menggunakan Metode Fuzzy,” J. TIKA, vol. 7, no. 3, pp. 235–242, 2022, doi: 10.51179/tika.v7i3.1538.

N. A. Y. S. Adilla Laela Tusifaiyah, “Penerapan Metode Forward Chaining Untuk Diagnosa

Penyakit Penyebab Stroke,” Infos J., vol. 14, no. 1, p. 97, 2022, [Online]. Available: www.nusamandiri.ac.id

Y. Ayuningtyas and I. Made Suartana, “Klasifikasi Penyakit Stroke Menggunakan Support Vector Machine (SVM) dan Particle Swarm Optimization (PSO),” vol. 04, no. 2022, pp. 452–457, 2023.

Y. P. Diwanto, “Jurnal Abdimas Saintika Jurnal Abdimas Saintika,” 2020, doi: http://dx.doi.org/10.30633/jas.v1i1.483.

Z. M. Razdiq and Y. Imran, “Hubungan antara tekanan darah dengan keparahan stroke menggunakan National Institute Health Stroke Scale,” J. Biomedika dan Kesehat., vol. 3, no. 1, pp. 15–20, 2020, doi: 10.18051/jbiomedkes.2020.v3.15-20.

H. S. W. Hovi, A. Id Hadiana, and F. Rakhmat Umbara, “Prediksi Penyakit Diabetes Menggunakan Algoritma Support Vector Machine (SVM),” Informatics Digit. Expert, vol. 4, no. 1, pp. 40–45, 2022, doi: 10.36423/index.v4i1.895.

S. H. Sinaga, A. A. M. Duha, and J. Banjarnahor, “Analisis Prediksi Deteksi Stroke Dengan Pendekatan Eda Dan Perbandingan Algoritma Machine Learning,” J. Ilm. Betrik, vol. 14, no. 02 AGUSTUS, pp. 355–367, 2023, doi: https://doi.org/10.36050/betrik.v14i02%20AG USTUS.120.

B. P. Tomasouw and F. Y. Rumlawang, “Penerapan Metode SVM Untuk Deteksi Dini Penyakit Stroke (Studi Kasus : RSUD Dr. H. Ishak Umarella Maluku Tengah dan RS Sumber Hidup-GPM),” Tensor Pure Appl. Math. J., vol. 4, no. 1, pp. 37–44, 2023, doi: 10.30598/tensorvol4iss1pp37-44.

K. R. Sulaeman, C. Setianingsih, and R. E. Saputra, “Analisis Algoritma Support Vector Machine Dalam Klasifikasi Penyakit Stroke,” e- Proceeding Eng., vol. 9, no. 3, pp. 922–928, 2022.

Y. N. Paramitha, A. Nuryaman, A. Faisol, E. Setiawan, and D. E. Nurvazly, “Klasifikasi Penyakit Stroke Menggunakan Metode Naïve Bayes,” J. Siger Mat., vol. 04, no. 01, pp. 11–16, 2023, doi:

https://doi.org/10.23960/jsm.v4i1.9236.

A. Irma Purnamasari and T. Suprapti, “Penerapan Algoritma Decision Tree Dalam Klasifikasi Penyakit Stroke Otak,” J. Mhs. Tek. Inform., vol. 8, no. 3, pp. 3038–3043, 2024, doi: https://doi.org/10.36040/jati.v8i3.9602.

M. F. Banjar, I. Irawati, F. Umar, and L. N. Hayati, “Analysis of Stroke Classification Using Random Forest Method,” Ilk. J. Ilm., vol. 14, no. 3, pp. 186–193, 2022, doi: 10.33096/ilkom.v14i3.1252.186-193.

Syamsiah and A. Darwaman, “Analisa Particle Swarm Optimization Terhadap Kepuasan,” Semin. Nas. Ris. dan Teknol. (SEMNAS RISTEK), pp. 143–148, 2020, doi: https://doi.org/10.30998/semnasristek.v4i1.245 5.

D. Irawan, E. B. Perkasa, Y. Yurindra, D. Wahyuningsih, and E. Helmud, “Perbandingan Klassifikasi SMS Berbasis Support Vector Machine, Naive Bayes Classifier, Random Forest dan Bagging Classifier,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 10, no. 3, pp. 432–437, 2021, doi: 10.32736/sisfokom.v10i3.1302.

E. Mardiani et al., “Membandingkan Algoritma Data Mining Dengan Tools Orange untuk Social Economy,” Digit. Transform. Technol., vol. 3, no. 2, pp. 686–693, 2023, doi: 10.47709/digitech.v3i2.3256.

gymprathap, “Hypertension-Stroke-Diabetes- Dataset.” [Online]. Available: https://data.world/gymprathap/hypertension- stroke-diabetes-dataset

D. Diana Dewi, N. Qisthi, S. S. S. Lestari, and

Z. H. S. Putri, “Perbandingan Metode Neural Network Dan Support Vector Machine Dalam Klasifikasi Diagnosa Penyakit Diabetes,” Cerdika J. Ilm. Indones., vol. 3, no. 09, pp. 828– 839, 2023, doi: 10.59141/cerdika.v3i09.662.

S. R. K. W. Tommy Rustandi, D. Suhaedi, and

Y. Pemanasari, “Pemetaan Hyperplane Pada Support Vector Machine,” Bandung Conf. Ser. Math., vol. 3, no. 2, pp. 109–119, 2023, doi: 10.29313/bcsm.v3i2.8187.

Published
2024-12-31
How to Cite
[1]
Danis Rifa Nurqotimah, A. Naseh Khudori, and R. Siwi Pradini, “Implementasi Algoritma Support Vector Machine (SVM) Untuk Klasifikasi Penyakit Stroke”, J. Appl. Comput. Sci. Technol., vol. 5, no. 2, p. in press, Dec. 2024.
Bookmark and Share