Pengolahan Citra Berbasis Video Proccesing dengan Metode Frame Difference untuk Deteksi Gerak

  • Yovi Apridiansyah Universitas Muhammadiyah Bengkulu
  • Ardi Wijaya Universitas Muhammadiyah bengkulu
  • Pahrizal Universitas Muhammadiyah bengkulu
  • Rozali Toyib Universitas Muhammadiyah bengkulu
  • Arif Setiawan Universitas Muhammadiyah bengkulu
DOI: https://doi.org/10.52158/jacost.v5i1.790
I will put the dimension here
Keywords: Digital Imagery, Detection, Frame Difference, Proccesing, Pixel

Abstract

This study discusses the detection of motion of objects in video by utilizing the Frame difference method which aims to process video so as to produce Frames on moving objects. The use of mobile cameras produces video data that is used as test data, the test data is processed with the Frame difference method so as to produce a number of Frames on moving objects in order to detect moving objects in the video because the function of this method is a form of video background reduction that is simplified by a number of pixels in the video. This method process is based on the difference between two consecutive frames in the video aimed at finding differences that occur during the detection process. When processed for detection, the absolute value in the pixel is greater than the predetermined threshold value, it will be considered as a moving object, so that the detection results from the motion detection process will form a box object on the moving object. In this study, the test data used used 20 video data samples with descriptions, 10 test data with bright quality (daytime) and 10 unlit test data (night) with the aim of being able to see how much the level of performance accuracy of the Frame difference method.  The test results obtained 16 out of 20 test data that were successfully detected correctly (True Positive), there were 2 test data that resulted in a False Positive error, and 2 test data that resulted in a False Negative error. This shows that the Frame difference method can provide a fairly high level of accuracy in detecting moving objects in the video. The percentage level of accuracy with confussion matrix testing has a precission value of 88%, recal 88% and an accuracy value of 80%.

Downloads

Download data is not yet available.

References

[1] J. Jumadi, Y. Yupianti, and D. Sartika, “Pengolahan Citra Digital Untuk Identifikasi Objek Menggunakan Metode Hierarchical Agglomerative Clustering,” JST (Jurnal Sains dan Teknol., vol. 10, no. 2, pp. 148–156, 2021, doi: 10.23887/jstundiksha.v10i2.33636.
[2] D. Anggraini, P. Hapsari, W. Khafa Nofa, and S. Santoso, “Analisis Performa Deteksi Objek Bergerak pada Algoritma Background Subtraction dan Algoritma Frame Difference.”
[3] F. C. Febrianto and F. Utaminingrum, “Perhitungan Kecepatan Kendaraan Secara Otomatis Menggunakan Metode Frame Difference Berbasis Raspberry Pi,” 2019. [Online]. Available: http://j-ptiik.ub.ac.id
[4] A. Riani Putri Jurusan Pendidikan Teknologi Informasi and S. PGRI Tulungagung Jl Mayor Sujadi Timur no, “PENGOLAHAN CITRA DENGAN MENGGUNAKAN WEB CAM PADA KENDARAAN BERGERAK DI JALAN RAYA,” 2016.
[5] H. Desmon Hutahaean, B. Dwi Waluyo, and M. A. Rais, “Teknologi Identifikasi Objek Berbasis Drone Menggunakan Algoritma Sift Citra Digital,” 2019.
[6] M. Effendi, F. Fitriyah, and U. Effendi, “Identifikasi Jenis dan Mutu Teh Menggunakan Pengolahan Citra Digital dengan Metode Jaringan Syaraf Tiruan,” J. Teknotan, vol. 11, no. 2, p. 67, Oct. 2017, doi: 10.24198/jt.vol11n2.7.
[7] M. Widyaningsih Jurusan Teknik Informatika Komputer and S. G. Palangkaraya Jl Obos No, “IDENTIFIKASI KEMATANGAN BUAH APEL DENGAN GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM).”
[8] M. I. Wayan Agus Heryanto, M. Windu Segara Kurniawan, and I. Gede Aris Gunadi, “SEGMENTASI WARNA DENGAN METODE THRESHOLDING,” 2020.
[9] I. Setiawan et al., “Pengolah Citra Dengan Metode Thresholding dengan Matlab R2014A…. Pengolah Citra Dengan Metode Thresholding Dengan Matlab R2014A,” 2019.
[10] N. N. Putri, “APLIKASI PENDETEKSI OBJEK BERGERAK PADAIMAGE SEQUENCE DENGAN METODE BACKGROUNDSUBSTRACTION DESIGNING AN APPLICATION OF MOVING OBJECT DETECTION ON IMAGE SEQUENCE USING BACKGROUND SUBSTRACTION,” 2016.
[11] R. A. Yuha, M. Al Fiqri, Ashari, R. Pratama, and M. Harahap, “Deteksi Gerakan pada Kamera CCTV dengan Algoritma Frame Difference dan Frame Substraction,” Semin. Nas. Aptikom 2019, pp. 503–511, 2019.
[12] D. Saptoadi and N. Hayati, “STRING (Satuan Tulisan Riset dan Inovasi Teknologi) IMPLEMENTASI METODE BACKGROUND SUBTRACTION DAN MORFOLOGI UNTUK MENDETEKSI OBJEK BERGERAK PADA VIDEO.”
[13] A. Apandi and R. S. Hati, “ANALISIS DETEKSI PERGERAKAN OBJEK PADA CITRA VIDEO MENGGUNAKAN ALGORITMA KALMAN FILTER.”
[14] S. R. U. . S. M. E. I. N. Tresya Anjali, “6. jm_informatika,+31471-67034-1-ED2 (1)”.
[15] Y. Apridiansyah and J. R. Gumiri, “Penerapan Metode Background Subtraction Untuk Deteksi Gerak Pada Kendaraan,” 2021.
[16] M. Harry, B. Pratama, A. Hidayatno, D. Ajub, and A. Zahra, “APLIKASI DETEKSI GERAK PADA KAMERA KEAMANAN MENGGUNAKAN METODE BACKGROUND SUBTRACTION DENGAN ALGORITMA GAUSSIAN MIXTURE MODEL.”
Published
2024-06-30
How to Cite
[1]
Yovi Apridiansyah, A. Wijaya, Pahrizal, Rozali Toyib, and Arif Setiawan, “Pengolahan Citra Berbasis Video Proccesing dengan Metode Frame Difference untuk Deteksi Gerak”, J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 81 - 89, Jun. 2024.
Section
Articles
Bookmark and Share