The Sentiment Analysis Reviewing Indosat Services from Twitter Using the Naive Bayes Classifier

  • Febri Astiko Universitas Mercu Buana
  • Achmad Khodar Universitas Mercu Buana
DOI: https://doi.org/10.52158/jacost.v1i2.79
I will put the dimension here
Keywords: sentiment analysis, indosat ooredoo, twitter, naive bayes classifier, positive negative

Abstract

This study aims to design a machine learning model of sentiment analysis on Indosat Ooredoo service reviews on social media twitter using the Naive Bayes algorithm as a classifier of positive and negative labels. This sentiment analysis uses machine learning to get patterns an model that can be used again to predict new data.

Downloads

Download data is not yet available.

References

I. Wahyudi, W. Maharani, and A. B. Tjokorda, “Analisis Sentimen terhadap Produk di Twitter menggunakan Metode Support Vektor Machine,” pp. 1–6, 2012.

D. Dutta Das, S. Sharma, S. Natani, N. Khare, and B. Singh, “Sentimental Analysis for Airline Twitter data,” IOP Conf. Ser. Mater. Sci. Eng., vol. 263, no. 4, 2017.

F. Hemmatian and M. K. Sohrabi, “A survey on classification techniques for opinion mining and sentiment analysis,” Artif. Intell. Rev., vol. 52, no. 3, pp. 1495–1545, 2019.

S. Vashishtha and S. Susan, “Fuzzy rule based unsupervised sentiment analysis from social media posts,” Expert Syst. Appl., vol. 138, 2019.

A. Pandhu and W. Diki, “Analisa sentimen dan Klasifikasi Komentar Positif Pada Twitter dengan Naïve Bayes Classification Sentiment Analysis and Classification of Positive Comments on Twitter with Naive Bayes Classification,” vol. 1, no. 2, 2020.

S. Fransiska, “Seri Sains dan Teknologi ANALISIS SENTIMEN TWITTER UNTUK REVIEW FILM MENGGUNAKAN ALGORITMA NAIVE BAYES CLASSIFIER ( NBC ) PADA SENTIMEN R Jurnal Siliwangi Vol . 5 . No . 2 , 2019 Seri Sains dan Teknologi P-ISSN 2477-3891 E-ISSN 2615-4765,” vol. 5, no. 2, 2019.

D. Ramayanti and U. Salamah, “Complaint Classification Using Support Vector Machine for Indonesian Text Dataset,” vol. 3, no. 7, pp. 179–184, 2018.

W. Sharif et al., “An empirical approach for extreme behavior identification through tweets using machine learning,” Appl. Sci., vol. 9, no. 18, 2019.

A. S. M. Alharbi and E. de Doncker, “Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information,” Cogn. Syst. Res., vol. 54, pp. 50–61, 2019.

A. C. E. S. Lima and L. N. De Castro, “Tecla: A temperament and psychological type prediction framework from Twitter data,” PLoS One, vol. 14, no. 3, pp. 1–18, 2019.

Published
2020-12-16
How to Cite
[1]
F. Astiko and Achmad Khodar, “The Sentiment Analysis Reviewing Indosat Services from Twitter Using the Naive Bayes Classifier”, J. Appl. Comput. Sci. Technol., vol. 1, no. 2, pp. 61 - 66, Dec. 2020.
Section
Articles
Bookmark and Share