Analisis Sentimen: Pengaruh Jam Kerja Terhadap Kesehatan Mental Generasi Z

  • Muhammad Daffa Al Fahreza Universitas Dian Nuswantoro
  • Ardytha Luthfiarta Universitas Dian Nuswantoro
  • Muhammad Rafid Universitas Dian Nuswantoro
  • Michael Indrawan Universitas Dian Nuswantoro
DOI: https://doi.org/10.52158/jacost.v5i1.715
I will put the dimension here
Keywords: Sentiment Analysis, Gaussian Naïve Bayes, Support Vector Machine, Stemming Algorithm, Mental Health, Generation Z

Abstract

Mental health is a significant concern in society today, particularly for Generation Z, who are vulnerable to experiencing mental health problems that can disrupt daily productivity. The influence of working hours also contributes to the mental health of this generation. To assess public opinion on this issue, sentiment analysis is needed on social media, especially twitter. This research uses the Gaussian Naïve Bayes algorithm and Support Vector Machine with various stemming algorithms such as Nazief-Adriani, Arifin Setiono, and Sastrawi. The sentiment analysis method is used to assess positive, negative, and neutral sentiment in related tweets. The research results show that the Sastrawi stemming algorithm on the Gaussian Naïve Bayes model achieves 84% precision, 84% recall, and 84% f1-score, with 84% accuracy. Meanwhile, Support Vector Machine achieved 91% precision, 90% recall, 90% f1-score, and 91% accuracy. The Nazief-Adriani stemming algorithm on the Gaussian Naïve Bayes model has 80% precision, 80% recall, and 80% f1-score, with 80% accuracy. Meanwhile, on the Support Vector Machine, precision is 87%, recall is 85%, f1-score is 86%, and accuracy is 85%. Arifin Setiono's stemming algorithm on the Gaussian Naïve Bayes model achieved 81% precision, 81% recall, 81% f1-score, with 82% accuracy, while on Support Vector Machine, 88% precision, 86% recall, 86% f1-score, with 86% accuracy. Public opinion was recorded as 33% positive, 9% neutral, and 58% negative. This research aims to increase public awareness of the importance of mental health, especially regarding the influence of working hours, to create a healthy work environment for Generation Z and society in general, as well as improving the quality of mental health.

Downloads

Download data is not yet available.

References

Resekiani Mas Bakar and A. Putri Maharani Usmar, “Growth Mindset dalam Meningkatkan Mental Health bagi Generasi Zoomer,” 2022.

Ahmad Ilham and Wahyu Pramusinto, “Analisis Sentimen Masyarakat Terhadap Kesehatan Mental Pada Twitter Menggunakan Algoritme K-nearest Neighbor,” Sep. 2023.

Kapo Wong, Alan H.S. Chan, and S. C. Ngan, “The Effect of Long Working Hours and Overtime on Occupational Health: A Meta-Analysis of Evidence from 1998 to 2018,” 2019.

Sungjin Park et al., “The negative impact of long working hours on mental health in young Korean workers,” Aug. 2020.

Karina Aulia and Lia Amelia, “Analisis Sentimen Twitter Pada Isu Mental Health Dengan Algoritma Klasifikasi Naive Bayes,” 2020.

K. Rahayu, V. Fitria, D. Septhya, R. Rahmaddeni, and L. Efrizoni, “Klasifikasi Teks untuk Mendeteksi Depresi dan Kecemasan pada Pengguna Twitter Berbasis Machine Learning,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 108–114, Sep. 2023, doi: 10.57152/malcom.v3i2.780.

N. L. Lavenia and R. Permatasari, “Sentiment Analysis on Twitter Social Media Regarding Depression Disorder Using the Naive Bayes Method,” CoreID J., vol. 1, no. 2, pp. 66–74, Jul. 2023, doi: 10.60005/coreid.v1i2.14.

I. M. A. Agastya, “Pengaruh Stemmer Bahasa Indonesia Terhadap Peforma Analisis Sentimen Terjemahan Ulasan Film,” J. Tekno Kompak, vol. 12, no. 1, p. 18, Feb. 2018, doi: 10.33365/jtk.v12i1.70.

H. Utami, “Analisis Sentimen dari Aplikasi Shopee Indonesia Menggunakan Metode Recurrent Neural Network,” Indones. J. Appl. Stat., vol. 5, no. 1, p. 31, May 2022, doi: 10.13057/ijas.v5i1.56825.

Davriwan Dzaky Muttaqien, Tibyani, and Pitoyo Peter Hartono, “Implementasi Support Vector Machine pada Analisis Sentimen mengenai Bantuan Sosial di Era Pandemi Covid-19 pada Pengguna Twitter,” 2022.

I. K. Dharmendra, N. N. U. Januhari, I. P. Ramayasa, and I. Putra, “Uji Komparasi Sentiment Analysis Pada Opini Alumni Terhadap Perguruan Tinggi,” J. Tek. Inform. UNIKA St. Thomas, pp. 1–6, 2022.

M. H. AL Farisi, “Analisis Sentimen Komentar Masyarakat Terhadap Kebijakan Pemerintah Tentang Sistem Zonasi Sekolah Menggunakan Algoritma K-Means dan Algoritma Levensthein Distance,” 2019.

Dyah Mustikasari, Ida Widaningrum, Rizal Arifin, and Wahyu Henggal Eka Putri, “Comparison of Effectiveness of Stemming Algorithms in Indonesian Documents,” 2020.

Edo Priyono Mualim, “Pendekatan Oversampling SMOTE Untuk Imbalanced Dataset Aksara Lampung Dan Klasifikasi Menggunakan Svm,” 2022.

Anab Maulana Barik, Rahmad Mahendra, and Mirna Adrian, “Normalization of Indonesian-English Code-Mixed Twitter Data,” 2019.

J Jumadi, D S Maylawati, L D Pratiwi, and M A Ramdhani, “Comparison of Nazief-Adriani and Paice-Husk algorithm for Indonesian text stemming process,” 2021.

Jian Budiarto, “Identifikasi Kebutuhan Masyarakat Nusa Tenggara Barat pada Pandemi Covid-19 di Media Sosial dengan Metode Crawling,” Feb. 2021.

D. Jurafsky and J. H. Martin, “Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition,” 2019.

Khusnul Khotimah Sirajuddin, Ahmad, and Dian Novita Siswanti, “Hubungan Harga Diri Dengan Kepuasan Hidup Generasi Z Pengguna Media Sosial Instagram,” 2023.

Desi Musfiroh, Ulfa Khaira, Pradita Eko Prasetyo Utomo, and Tri Suratno, “Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon,” Apr. 2021.

Afian Syafaadi Rizki, Aris Tjahyanto, and Rahmat Trialih, “Comparison of stemming algorithms on Indonesian text processing,” Feb. 2019.

Merinda Lestandy, Abdurrahim Abdurrahim, and Lailis Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,” 2021.

Ngurah Indra Purnayasa, I Made Agus Dwi Suarjaya, and I Putu Arya Dharmaadia, “Analysis of Cyberbullying Level using Support Vector Machine Method,” Aug. 2022.

Nur Ghaniaviyanto Ramadhan and Faisal Dharma Adhinata, “Sentiment analysis on vaccine COVID-19 using word count and Gaussian Naïve Bayes,” 2022.

Setyo Adji Pratomo, Said Al Faraby, and Mahendra Dwifebri Purbolaksono, “Analisis Sentimen Pengaruh Kombinasi Ekstraksi Fitur TF-IDF dan Lexicon Pada Ulasan Film Menggunakan Metode KNN,” 2021.

Published
2024-02-03
How to Cite
[1]
Muhammad Daffa Al Fahreza, Ardytha Luthfiarta, Muhammad Rafid, and Michael Indrawan, “Analisis Sentimen: Pengaruh Jam Kerja Terhadap Kesehatan Mental Generasi Z”, J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 16 - 25, Feb. 2024.
Section
Articles
Bookmark and Share