Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText

  • Muhaza Liebenlito UIN Syarif Hidayatullah Jakarta
  • Arlianis Arum Yesinta UIN Syarif Hidayatullah Jakarta
  • Muhamad Irvan Septiar Musti UIN Syarif Hidayatullah Jakarta
DOI: https://doi.org/10.52158/jacost.v5i1.655
I will put the dimension here
Keywords: FastText, klasifikasi teks, berita daring, clickbait

Abstract

The rise of people accessing news portals has created intense competition between online media to get readers or visitors to maximize their revenue. This is what triggers the development of clickbait. Clickbait can reduce the quality of the news itself, and it also has the potential to be misinformation regarding to news contents as known as fake news. Therefore, it is necessary to detect news titles that contain clickbait. This study aims to obtain an optimal clickbait news title classification model using FastText. To get the optimal model can be done by cleaning the data and optimizing the model's hyperparameters. The model was trained using 9600 training data collected from Indonesian online news. The best model obtained in this study has performance with an accuracy of 77% and an F1-Score of 69%.

 

Downloads

Download data is not yet available.

References

N. Rahmatika and G. Prisanto, “Pengaruh Berita Clickbait Terhadap Kepercayaan pada Media di Era Attention Economy,” Avant Garde, vol. 10, no. 2, Art. no. 2, Dec. 2022, doi: 10.36080/ag.v10i2.1947.

Y. Chen, N. K. Conroy, and V. L. Rubin, “News in an online world: The need for an ‘automatic crap detector,’” Proceedings of the Association for Information Science and Technology, vol. 52, no. 1, pp. 1–4, 2015, doi: 10.1002/pra2.2015.145052010081.

Y. Chen, N. J. Conroy, and V. L. Rubin, “Misleading Online Content: Recognizing Clickbait as ‘False News,’” in Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection, in WMDD ’15. New York, NY, USA: Association for Computing Machinery, Nov. 2015, pp. 15–19. doi: 10.1145/2823465.2823467.

“Tingkat Literasi Indonesia di Dunia Rendah, Ranking 62 Dari 70 Negara.” Accessed: Sep. 09, 2023. [Online]. Available: https://perpustakaan.kemendagri.go.id/2021/03/tingkat-literasi-indonesia-di-dunia-rendah-ranking-62-dari-70-negara/

M. Liebenlito, Ivansyah, M. Y. Wijaya, and R. F. Suwarman, “Modified self-attentive bi-directional long-short term memory for detecting clickbait in Indonesian news headline,” AIP Conference Proceedings, vol. 3049, no. 1, p. 020016, Feb. 2024, doi: 10.1063/5.0194623.

B. Siregar, I. Habibie, E. B. Nababan, and Fahmi, “Identification of Indonesian clickbait news headlines with long short-term memory recurrent neural network algorithm,” J. Phys.: Conf. Ser., vol. 1882, no. 1, p. 012129, May 2021, doi: 10.1088/1742-6596/1882/1/012129.

A. William and Y. Sari, “CLICK-ID: A novel dataset for Indonesian clickbait headlines,” Data in Brief, vol. 32, p. 106231, Oct. 2020, doi: 10.1016/j.dib.2020.106231.

A. Amalia, O. S. Sitompul, E. B. Nababan, and T. Mantoro, “An Efficient Text Classification Using fastText for Bahasa Indonesia Documents Classification,” in 2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA), Jul. 2020, pp. 69–75. doi: 10.1109/DATABIA50434.2020.9190447.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors with Subword Information,” Transactions of the Association for Computational Linguistics, vol. 5, pp. 135–146, 2017, doi: 10.1162/tacl_a_00051.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks for Efficient Text Classification,” in Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, M. Lapata, P. Blunsom, and A. Koller, Eds., Valencia, Spain: Association for Computational Linguistics, Apr. 2017, pp. 427–431. Accessed: Dec. 21, 2023. [Online]. Available: https://aclanthology.org/E17-2068

S. Martinčić-Ipšić, T. Miličić, and L. Todorovski, “The Influence of Feature Representation of Text on the Performance of Document Classification,” Applied Sciences, vol. 9, no. 4, Art. no. 4, Jan. 2019, doi: 10.3390/app9040743.

B. Kuyumcu, C. Aksakalli, and S. Delil, “An automated new approach in fast text classification (fastText): A case study for Turkish text classification without pre-processing,” in Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval, in NLPIR ’19. New York, NY, USA: Association for Computing Machinery, Jun. 2019, pp. 1–4. doi: 10.1145/3342827.3342828.

T.-T. Wong, “Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation,” Pattern Recognition, vol. 48, no. 9, pp. 2839–2846, Sep. 2015, doi: 10.1016/j.patcog.2015.03.009.

Published
2024-03-24
How to Cite
[1]
M. Liebenlito, A. A. Yesinta, and M. I. S. Musti, “Deteksi Clickbait pada Judul Berita Online Berbahasa Indonesia Menggunakan FastText”, J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 56 - 62, Mar. 2024.
Section
Articles
Bookmark and Share