Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen

  • Sharazita Dyah Anggita Universitas Amikom Yogyakarta Indonesia
  • Ferian Fauzi Abdulloh Universitas AMIKOM Yogyakarta
DOI: https://doi.org/10.52158/jacost.v4i1.524
I will put the dimension here
Keywords: Information Gain, SVM, PSO

Abstract

Sentiment analysis is a method for processing consumer reviews. This study examines the application of the Support Vector Machine (SVM) algorithm based on PSO and Information Gain as feature selection to filter attributes as a form of optimization. Algorithm implementation in sentiment analysis is carried out by applying a test scenario to measure the level of accuracy of the several parameters used. Selection of the Information Gain feature using the top-k parameter yields an accuracy value of 85.3%. Algortima optimization applying information gain feature selection on the PSO-based SVM resulted in an optimal accuracy rate of 86.81%. The resulting increase in accuracy is 18.84% compared to the application of classic SVM without PSO-based information gain feature selection. Applying information gain feature selection on the PSO-based SVM algorithm can increase the accuracy value in the online sentiment review analysis.

Downloads

Download data is not yet available.

References

M. H. Azhar, P. P. Adikara, and Y. A. Sari, “Analisis Sentimen pada Ulasan Hotel dengan Fitur Score Representation dan Identifikasi Aspek pada Ulasan Menggunakan K-Modes,” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 9, pp. 2777–2782, 2018.

D. A. Kristiyanti and M. Wahyudi, “Feature selection based on Genetic algorithm, particle swarm optimization and principal component analysis for opinion mining cosmetic product review,” 2017 5th Int. Conf. Cyber IT Serv. Manag. CITSM 2017, 2017, doi: 10.1109/CITSM.2017.8089278.

I. Kurniawati and H. F. Pardede, “Hybrid Method of Information Gain and Particle Swarm Optimization for Selection of Features of SVM-Based Sentiment Analysis,” 2018 Int. Conf. Inf. Technol. Syst. Innov. ICITSI 2018 - Proc., pp. 1–5, 2018, doi: 10.1109/ICITSI.2018.8695953.

A. Supriyatna and W. P. Mustika, “Komparasi Algoritma Naive bayes dan SVM Untuk Memprediksi Keberhasilan Imunoterapi Pada Penyakit Kutil,” no. 2, pp. 152–161, 2018.

W. A. Luqyana, I. Cholissodin, and R. S. Perdana, “Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine,” vol. 2, no. 11, pp. 4704–4713, 2018.

A. Yudha, Y. Nuryaman, I. Nuddin, and A. Andhikawati, “Sentiment Analysis Pandangan Masyarakat Terhadap Tarif Tol Trans-Jawa Menggunakan Support Vector Machine dan Particle Swarm Optimization,” pp. 13–22, 2019.

S. Antar, B. Vol, V. I. No, and E. Supriyadi, “Metode SVM Berbasis PSO untuk Meningkatkan Prediksi Ketepatan Waktu Kelulusan Mahasiswa,” no. 2, pp. 113–120, 2017.

O. Somantri, D. Apriliani, J. T. Informatika, P. Harapan, and B. Tegal, “Support Vector Machine Berbasis Feature Selection Untuk Sentiment Analysis Kepuasan Pelanggan Terhadap Pelayanan Support Vector Machine Based on Feature Selection for Sentiment Analysis Customer Satisfaction on Culinary,” vol. 5, no. 5, pp. 537–548, 2018, doi: 10.25126/jtiik20185867.

M. Hilman Aprilian Nurjaman and M. Syahrul Mubarok, “Analisis Sentimen Pada Ulasan Buku Berbahasa Inggris Menggunakan Information Gain Dan Support Vector Machine Sentiment Analysis on the English Book Reviews Using Information Gain and Support Vector Machine,” vol. 4, no. 3, pp. 4900–4906, 2017.

M. Somvanshi, P. Chavan, S. Tambade, and S. V. Shinde, “A review of machine learning techniques using decision tree and support vector machine,” Proc. - 2nd Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2016, 2017, doi: 10.1109/ICCUBEA.2016.7860040.

R. R. Setiawan et al., “Analisis Sentimen Pariwisata di Kota Malang Menggunakan Metode Naive Bayes dan Seleksi Fitur Query Expansion Ranking,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., 2017, doi: 10.1074/jbc.M209498200.

A. Novelty Octaviani Faomasi Daeli, “Sentiment Analysis on Movie Reviews Using Information Gain and K-Nearest Neighbor,” J. Data Sci. Its Appl., vol. 3, no. 1, pp. 1–007, 2020, doi: 10.34818/JDSA.2020.3.22.

N. M. G. D. Purnamasari, M. Ali Fauzi, Indriati, and L. S. Dewi, “Cyberbullying identification in twitter using support vector machine and information gain based feature selection,” Indones. J. Electr. Eng. Comput. Sci., vol. 18, no. 3, pp. 1494–1500, 2020, doi: 10.11591/ijeecs.v18.i3.pp1494-1500.

S. Widya Sihwi, I. Prasetya Jati, and R. Anggrainingsih, “Twitter Sentiment Analysis of Movie Reviews Using Information Gain and Naïve Bayes Classifier,” Proc. - 2018 Int. Semin. Appl. Technol. Inf. Commun. Creat. Technol. Hum. Life, iSemantic 2018, pp. 190–195, 2018, doi: 10.1109/ISEMANTIC.2018.8549757.

Sharazita Dyah Anggita and Ikmah, “Algorithm Comparation of Naive Bayes and Support Vector Machine based on Particle Swarm Optimization in Sentiment Analysis of Freight Forwarding Services,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 2, pp. 362–369, 2020, doi: 10.29207/resti.v4i2.1840.

G. G. Gunadi, S. Rostianingsih, A. Gunawan, and J. S. Surabaya, “Prediksi Retensi Customer Berdasarkan Support Vector Machine dengan Preprocessing Menggunakan Hadoop,” pp. 1–4.

W. Zihao, L. Lan, X. Zongyi, and C. Guangtao, “The forecasting model of wheelset size based on PSO-SVM,” Proc. 31st Chinese Control Decis. Conf. CCDC 2019, pp. 2609–2613, 2019, doi: 10.1109/CCDC.2019.8832937.

F. R. Purwandari, “Sistem Informasi Penjualan Berbasis Web pada PT. Mustika Jati,” Sist. Inf. Penjualan Berbas. Web Pada PT. Mustika Jati Farhan, vol. 1, no. 4393, pp. 43–57, 2018, [Online]. Available: http://research.kalbis.ac.id/Research/Files/Article/Full/ET722JFJEKQYRF2PKZC1UBQOU.pdf.

Y. Setiowati and A. Helen, “Klasifikasi Analisis Sentimen Mengenai Hotel Di Yogyakarta,” SCAN - J. Teknol. Inf. dan Komun., vol. 13, no. 1, 2018, doi: 10.33005/scan.v13i1.1052.

Y. R. Nugraha, A. P. Wibawa, and I. A. E. Zaeni, “Particle Swarm Optimization-Support Vector Machine (PSO-SVM) Algorithm for Journal Rank Classification,” Proc. - 2019 2nd Int. Conf. Comput. Informatics Eng. Artif. Intell. Roles Ind. Revolut. 4.0, IC2IE 2019, pp. 69–73, 2019, doi: 10.1109/IC2IE47452.2019.8940822.

Published
2023-07-01
How to Cite
[1]
Sharazita Dyah Anggita and Ferian Fauzi Abdulloh, “Optimasi Algoritma Support Vector Machine Berbasis PSO Dan Seleksi Fitur Information Gain Pada Analisis Sentimen ”, J. Appl. Comput. Sci. Technol., vol. 4, no. 1, pp. 52 - 57, Jul. 2023.
Section
Articles
Bookmark and Share