Systematic Literature Review: Analisa Sentimen Masyarakat terhadap Penerapan Peraturan ETLE
I will put the dimension here
Abstract
This study examines the efforts to develop a model for analyzing public sentiment regarding applying ETLE (Electronic Traffic Law Enforcement) regulations. The method used is the systematic literature review. A systematic literature review (SLR) consists of three stages: planning, conducting, and reporting. The planning stage is the determination of the SLR procedure. This stage includes preparing topics, research questions, article search criteria & inclusion and exclusion criteria. The conducting stage, namely the implementation, includes searching for articles and filtering articles. The reporting stage is the final stage of SLR. This stage includes writing the SLR results according to the article format. The explanation follows: First, hybrid is the most widely used method in developing sentiment analysis models. Apart from hybrid, several methods are used to develop sentiment analysis models, including multi-task, deep, and machine learning. Each has its advantages and disadvantages in the development of sentiment analysis models. Second, this study shows the development of a model with superior performance, namely using XGBoost as a sentiment analysis model, and the stages it goes through are preprocessing data, handling imbalanced data, and optimizing the model. Therefore, the model for analyzing public sentiment regarding the application of ETLE regulations can be an option for hybrid methods, multi-task learning, deep learning, machine learning, and the XGBoost model to obtain superior performance with preprocessing data stages, handling imbalanced data and optimization models.
Downloads
References
A. S. Nugroho, “Electronic Traffic Law Enforcement (E-Tle) Mobile Sebagai Difusi Inovasi, Interoperabilitas Menuju E-Tle Nasional (Studi Implementasi E-Tle Mobile Di Wilayah Jawa Tengah),” Jurnal Ilmu Kepolisian, 2022.
A. N. Leonita, I. Islah, And H. Hisbah, “Penegakan Hukum Terhadap Pelanggaran Lalu Lintas Di Kota Jambi Melalui Tilang Elektronik Atau Electronic Traffic Law Enforcement (Etle),” Jurnal Ilmiah Universitas Batanghari Jambi, 2022.
A. A. Rahman, R. H. Yoga, And M. D. Atmadja, “Sepeda Motor Untuk Data Investigasi Kecelakaan Lalu Lintas Berbasis Modul Gsm,” 2021.
D. M. Nugraha And S. D. Kurniawan, “Prototype Sistem Pengawasan Pada Lampu Lalu Lintas Di Persimpangan Jalan Menggunakan Raspberry Pi Untuk Mencatat Pelanggaran Lampu Merah,” 2016.
A. Israk, R. Satra, And F. Fattah, “Perancangan Sistem Pendeteksi Pelanggaran Lampu Lalu Lintas Menggunakan Raspberry Pi 3 Berbasis Internet Of Things,” Buletin Sistem Informasi Dan Teknologi Islam, 2021.
R. Safitri, M. Fahri, And R. Arlianda, “Perilaku Berkendara Dampak Penerapan Electronic Traffic Law Enforcement (Etle) Pada Simpang Bersinyal Di Kota Pangkalpinang,” Bentang : Jurnal Teoritis Dan Terapan Bidang Rekayasa Sipil, 2023.
E. Syafitri And D. Mashur, “Efektivitas Implementasi Program Electronic Traffic Law Envorcement (Etle) Nasional Dalam Peningkatan Pelayanan Publik Di Kota Pekanbaru,” Cross-Border, Vol. 5, No. 2, Pp. 1322–1337, 2022.
M. Sari And A. Saputra, “Implementasi Pemberlakuan E-Tilang Terhadap Pelanggaran Lalu Lintas Oleh Polrestabes Semarang,” Jurnal Komunikasi Hukum (Jkh), Vol. 9, No. 1, Pp. 901–917, 2023.
Y. Armala And M. Yasir, “Implementasi Electronic Traffic Law Enforcement (Etle) Di Wilayah Hukum Kepolisian Resor Bojonegoro,” Justitiable-Jurnal Hukum, Vol. 5, No. 1, Pp. 32–44, 2022.
Y. Yuliantoro And A. Sulchan, “The Effectiveness Against Traffic Violations With Electronic Traffic Law Enforcement (Etle),” Law Development Journal, 2021.
V. V. Kumar, K. M. K. Raghunath, V. Muthukumaran, R. B. Joseph, I. S. Beschi, And A. K. Uday, “Aspect Based Sentiment Analysis And Smart Classification In Uncertain Feedback Pool,” International Journal Of System Assurance Engineering And Management, Vol. 13, No. 1, Pp. 252–262, 2022, Doi: 10.1007/S13198-021-01379-2.
M. Ewing, L. R. Men, And J. O’neil, “Using Social Media To Engage Employees: Insights From Internal Communication Managers,” International Journal Of Strategic Communication, Vol. 13, No. 2, Pp. 110–132, Mar. 2019, Doi: 10.1080/1553118x.2019.1575830.
T. R. Soomro And M. Hussain, “Social Media-Related Cybercrimes And Techniques For Their Prevention.,” Appl. Comput. Syst., Vol. 24, No. 1, Pp. 9–17, 2019.
C. M. Pulido, B. Villarejo-Carballido, G. Redondo-Sama, And A. Gómez, “Covid-19 Infodemic: More Retweets For Science-Based Information On Coronavirus Than For False Information,” International Sociology, Vol. 35, No. 4, Pp. 377–392, 2020.
A. Karami, V. Shah, R. Vaezi, And A. Bansal, “Twitter Speaks: A Case Of National Disaster Situational Awareness,” J Inf Sci, Vol. 46, No. 3, Pp. 313–324, 2020.
T. Krisdiyanto, “Analisis Sentimen Opini Masyarakat Indonesia Terhadap Kebijakan Ppkm Pada Media Sosial Twitter Menggunakan Naïve Bayes Clasifiers,” Jurnal Coreit: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, 2021.
A. Harun And D. P. Ananda, “Analisa Sentimen Opini Publik Tentang Vaksinasi Covid-19 Di Indonesia Menggunakan Naïve Bayes Dan Decission Tree,” Malcom: Indonesian Journal Of Machine Learning And Computer Science, 2021.
A. Kusuma And A. Nugroho, “Analisa Sentimen Pada Twitter Terhadap Kenaikan Tarif Dasar Listrik Dengan Metode Naïve Bayes,” Jurnal Ilmiah Teknologi Informasi Asia, 2021.
M. I. Wardah And S. D. Putra, “Implementasi Machine Learning Untuk Rekomendasi Film Di Imdb Menggunakan Collaborative Filtering Berdasarkan Analisa Sentimen Imdb,” Jurnal Manajamen Informatika Jayakarta, 2022.
S. F. Pane And J. Ramdan, “Pemodelan Machine Learning : Analisis Sentimen Masyarakat Terhadap Kebijakan Ppkm Menggunakan Data Twitter,” Jurnal Sistem Cerdas, 2022.
N. Nurfauziah And A. Putra, “Systematic Literature Review: Etnomatematika Pada Rumah Adat,” Jurnal Riset Pembelajaran Matematika, 2022.
M. Shin And J. S. Haberl, “Thermal Zoning For Building Hvac Design And Energy Simulation: A Literature Review,” Energy Build, Vol. 203, P. 109429, 2019, Doi: Https://Doi.Org/10.1016/J.Enbuild.2019.109429.
M. E. M. Abo Et Al., “A Multi-Criteria Approach For Arabic Dialect Sentiment Analysis For Online Reviews: Exploiting Optimal Machine Learning Algorithm Selection,” Sustainability, Vol. 13, No. 18, 2021, Doi: 10.3390/Su131810018.
E. C. Blalock, Y. Fan, And X. Lyu, “A Systematic Literature Review Of Chinese Entrepreneurship: Utilizing Feminist Theory With Implications For Public Policy,” Entrepreneurship & Regional Development, Vol. 35, No. 5–6, Pp. 482–510, May 2023, Doi: 10.1080/08985626.2023.2184873.
P. Zare, C. Pettit, S. Z. Leao, And O. Gudes, “Digital Bicycling Planning: A Systematic Literature Review Of Data-Driven Approaches,” Sustainability, 2022.
W. Mengist, T. Soromessa, And G. Legese, “Method For Conducting Systematic Literature Review And Meta-Analysis For Environmental Science Research,” Methodsx, Vol. 7, P. 100777, 2020.
I. Nurhas, “A Brief Overview Of The Process Of Conducting A Systematic Literature Review (Slr).,” 2021.
M. L. Rethlefsen Et Al., “Prisma-S: An Extension To The Prisma Statement For Reporting Literature Searches In Systematic Reviews,” Syst Rev, Vol. 10, No. 1, P. 39, 2021, Doi: 10.1186/S13643-020-01542-Z.
A. Schniedermann, “Shaping The Qualities, Values And Standards Of Science. How Reporting Guidelines Improve The Transparency Of Biomedical Research,” Front Res Metr Anal, P. 34, 2022.
M. Ashiq, S. U. Rehman, M. Safdar, And H. Ali, “Academic Library Leadership In The Dawn Of The New Millennium: A Systematic Literature Review,” The Journal Of Academic Librarianship, Vol. 47, No. 3, P. 102355, 2021, Doi: Https://Doi.Org/10.1016/J.Acalib.2021.102355.
S. Nabilah, H. Pujiastuti, And S. Syamsuri, “Systematic Literature Review : Literasi Numerasi Dalam Pembelajaran Matematika, Jenjang, Materi, Model Dan Media Pembelajaran,” Jiip - Jurnal Ilmiah Ilmu Pendidikan, 2023.
J. P. Romanelli, P. Meli, R. P. Naves, M. C. Alves, And R. R. Rodrigues, “Reliability Of Evidence-Review Methods In Restoration Ecology,” Conservation Biology, Vol. 35, No. 1, Pp. 142–154, Feb. 2021, Doi: Https://Doi.Org/10.1111/Cobi.13661.
M. E. Basiri, S. Nemati, M. Abdar, E. Cambria, And U. R. Acharya, “Abcdm: An Attention-Based Bidirectional Cnn-Rnn Deep Model For Sentiment Analysis,” Future Generation Computer Systems, Vol. 115, Pp. 279–294, 2021, Doi: Https://Doi.Org/10.1016/J.Future.2020.08.005.
S. Yoo, J. Song, And O. Jeong, “Social Media Contents Based Sentiment Analysis And Prediction System,” Expert Syst Appl, Vol. 105, Pp. 102–111, 2018, Doi: Https://Doi.Org/10.1016/J.Eswa.2018.03.055.
M. Alam, F. Abid, C. Guangpei, And L. V Yunrong, “Social Media Sentiment Analysis Through Parallel Dilated Convolutional Neural Network For Smart City Applications,” Comput Commun, Vol. 154, Pp. 129–137, 2020, Doi: Https://Doi.Org/10.1016/J.Comcom.2020.02.044.
R. L. Rosa, G. M. Schwartz, W. V. Ruggiero, And D. Z. Rodríguez, “A Knowledge-Based Recommendation System That Includes Sentiment Analysis And Deep Learning,” Ieee Trans Industr Inform, Vol. 15, No. 4, Pp. 2124–2135, 2019, Doi: 10.1109/Tii.2018.2867174.
F. Abid, M. Alam, M. Yasir, And C. Li, “Sentiment Analysis Through Recurrent Variants Latterly On Convolutional Neural Network Of Twitter,” Future Generation Computer Systems, Vol. 95, Pp. 292–308, 2019, Doi: Https://Doi.Org/10.1016/J.Future.2018.12.018.
S. Ahmad, M. Z. Asghar, F. M. Alotaibi, And I. Awan, “Detection And Classification Of Social Media-Based Extremist Affiliations Using Sentiment Analysis Techniques,” Human-Centric Computing And Information Sciences, Vol. 9, No. 1, P. 24, 2019, Doi: 10.1186/S13673-019-0185-6.
Y. Ma, H. Peng, T. Khan, E. Cambria, And A. Hussain, “Sentic Lstm: A Hybrid Network For Targeted Aspect-Based Sentiment Analysis,” Cognit Comput, Vol. 10, No. 4, Pp. 639–650, 2018, Doi: 10.1007/S12559-018-9549-X.
O. Ajao, D. Bhowmik, And S. Zargari, “Sentiment Aware Fake News Detection On Online Social Networks,” In Icassp 2019 - 2019 Ieee International Conference On Acoustics, Speech And Signal Processing (Icassp), 2019, Pp. 2507–2511. Doi: 10.1109/Icassp.2019.8683170.
Y. Cai, Q. Huang, Z. Lin, J. Xu, Z. Chen, And Q. Li, “Recurrent Neural Network With Pooling Operation And Attention Mechanism For Sentiment Analysis: A Multi-Task Learning Approach,” Knowl Based Syst, Vol. 203, P. 105856, 2020, Doi: Https://Doi.Org/10.1016/J.Knosys.2020.105856.
G. A. Ruz, P. A. Henríquez, And A. Mascareño, “Sentiment Analysis Of Twitter Data During Critical Events Through Bayesian Networks Classifiers,” Future Generation Computer Systems, Vol. 106, Pp. 92–104, 2020, Doi: Https://Doi.Org/10.1016/J.Future.2020.01.005.
A. S. Neogi, K. A. Garg, R. K. Mishra, And Y. K. Dwivedi, “Sentiment Analysis And Classification Of Indian Farmers’ Protest Using Twitter Data,” International Journal Of Information Management Data Insights, Vol. 1, No. 2, P. 100019, 2021, Doi: Https://Doi.Org/10.1016/J.Jjimei.2021.100019.
R. Haque, N. Islam, M. Tasneem, And A. K. Das, “Multi-Class Sentiment Classification On Bengali Social Media Comments Using Machine Learning,” International Journal Of Cognitive Computing In Engineering, Vol. 4, Pp. 21–35, 2023, Doi: Https://Doi.Org/10.1016/J.Ijcce.2023.01.001.
A. Abdi, S. M. Shamsuddin, S. Hasan, And J. Piran, “Deep Learning-Based Sentiment Classification Of Evaluative Text Based On Multi-Feature Fusion,” Inf Process Manag, Vol. 56, No. 4, Pp. 1245–1259, 2019, Doi: Https://Doi.Org/10.1016/J.Ipm.2019.02.018.
R. Kumar, H. S. Pannu, And A. K. Malhi, “Aspect-Based Sentiment Analysis Using Deep Networks And Stochastic Optimization,” Neural Comput Appl, Vol. 32, No. 8, Pp. 3221–3235, 2020, Doi: 10.1007/S00521-019-04105-Z.
C. Colón-Ruiz And I. Segura-Bedmar, “Comparing Deep Learning Architectures For Sentiment Analysis On Drug Reviews,” J Biomed Inform, Vol. 110, P. 103539, 2020, Doi: Https://Doi.Org/10.1016/J.Jbi.2020.103539.
M. A. Rahman, H. Budianto, And E. I. Setiawan, “Aspect Based Sentimen Analysis Opini Publik Pada Instagram Dengan Convolutional Neural Network,” Journal Of Intelligent System And Computation, 2019.
H. Bunyamin And Meyliana, “Classical And Deep Learning Time Series Prediction Techniques In The Case Of Indonesian Economic Growth,” Iop Conf Ser Mater Sci Eng, Vol. 1077, 2021.
B. Hakim, “Analisa Sentimen Data Text Preprocessing Pada Data Mining Dengan Menggunakan Machine Learning,” Jbase - Journal Of Business And Audit Information Systems, 2021.
Y. Zhang And Q. Yang, “A Survey On Multi-Task Learning,” Ieee Trans Knowl Data Eng, Vol. 34, Pp. 5586–5609, 2017.
Y. Zhang And Q. Yang, “An Overview Of Multi-Task Learning,” Natl Sci Rev, Vol. 5, Pp. 30–43, 2018.
A. Gesmundo And J. Dean, “An Evolutionary Approach To Dynamic Introduction Of Tasks In Large-Scale Multitask Learning Systems,” Arxiv, Vol. Abs/2205.12755, 2022.
C. Fan, M. Chen, X. Wang, J. Wang, And B. Huang, “A Review On Data Preprocessing Techniques Toward Efficient And Reliable Knowledge Discovery From Building Operational Data,” Front Energy Res, Vol. 9, 2021, Doi: 10.3389/Fenrg.2021.652801.
K. Yu, L. Tan, L. Lin, X. Cheng, Z. Yi, And T. Sato, “Deep-Learning-Empowered Breast Cancer Auxiliary Diagnosis For 5gb Remote E-Health,” Ieee Wirel Commun, Vol. 28, No. 3, Pp. 54–61, 2021.
S. Biswas And H. Rajan, “Fair Preprocessing: Towards Understanding Compositional Fairness Of Data Transformers In Machine Learning Pipeline,” Proceedings Of The 29th Acm Joint Meeting On European Software Engineering Conference And Symposium On The Foundations Of Software Engineering, 2021.
N. Lu And T. Yin, “Transferable Common Feature Space Mining For Fault Diagnosis With Imbalanced Data,” Mech Syst Signal Process, Vol. 156, P. 107645, 2021.
N. Malave And A. V Nimkar, “A Survey On Effects Of Class Imbalance In Data Pre-Processing Stage Of Classification Problem,” International Journal Of Computational Systems Engineering, Vol. 6, No. 2, Pp. 63–75, 2020.
D. Kuhn, P. M. Esfahani, V. A. Nguyen, And S. Shafieezadeh-Abadeh, “Wasserstein Distributionally Robust Optimization: Theory And Applications In Machine Learning,” Arxiv, Vol. Abs/1908.08729, 2019.
N.-T. Ngo Et Al., “Proposing A Hybrid Metaheuristic Optimization Algorithm And Machine Learning Model For Energy Use Forecast In Non-Residential Buildings,” Sci Rep, Vol. 12, 2022.
B. Albadani, R. Shi, And J. Dong, “A Novel Machine Learning Approach For Sentiment Analysis On Twitter Incorporating The Universal Language Model Fine-Tuning And Svm,” Applied System Innovation, 2022.
Copyright (c) 2023 Syafrial Fachri Pane, Muhammad Syiarul Amrullah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Pernyataan Hak Cipta dan Lisensi
Dengan mengirimkan manuskrip ke Journal of Applied Computer Science and Technology (JACOST), penulis setuju dengan kebijakan ini. Tidak diperlukan persetujuan dokumen khusus.
- Hak cipta pada setiap artikel adalah milik penulis.
- Penulis mempertahankan semua hak mereka atas karya yang diterbitkan, tak terbatas pada hak-hak yang diatur dalam laman ini.
- Penulis mengakui bahwa Journal of Applied Computer Science and Technology (JACOST) sebagai yang pertama kali mempublikasikan dengan lisensi Creative Commons Atribusi 4.0 Internasional (CC BY-SA).
- Penulis dapat memasukan tulisan secara terpisah, mengatur distribusi non-ekskulif dari naskah yang telah terbit di jurnal ini kedalam versi yang lain (misal: dikirim ke respository institusi penulis, publikasi kedalam buku, dll), dengan mengakui bahwa naskah telah terbit pertama kali pada Journal of Applied Computer Science and Technology (JACOST);
- Penulis menjamin bahwa artikel asli, ditulis oleh penulis yang disebutkan, belum pernah dipublikasikan sebelumnya, tidak mengandung pernyataan yang melanggar hukum, tidak melanggar hak orang lain, tunduk pada hak cipta yang secara eksklusif dipegang oleh penulis.
- Jika artikel dipersiapkan bersama oleh lebih dari satu penulis, setiap penulis yang mengirimkan naskah menjamin bahwa dia telah diberi wewenang oleh semua penulis bersama untuk menyetujui hak cipta dan pemberitahuan lisensi (perjanjian) atas nama mereka, dan setuju untuk memberi tahu rekan penulis persyaratan kebijakan ini. Journal of Applied Computer Science and Technology (JACOST) tidak akan dimintai pertanggungjawaban atas apa pun yang mungkin timbul karena perselisihan internal penulis.
Lisensi :
Journal of Applied Computer Science and Technology (JACOST) diterbitkan berdasarkan ketentuan Lisensi Creative Commons Atribusi 4.0 Internasional (CC BY-SA). Lisensi ini mengizinkan setiap orang untuk :.
- Berbagi — menyalin dan menyebarluaskan kembali materi ini dalam bentuk atau format apapun;
- Adaptasi — menggubah, mengubah, dan membuat turunan dari materi ini untuk kepentingan apapun.
Lisensi :
-
Atribusi — Anda harus mencantumkan nama yang sesuai, mencantumkan tautan terhadap lisensi, dan menyatakan bahwa telah ada perubahan yang dilakukan. Anda dapat melakukan hal ini dengan cara yang sesuai, namun tidak mengisyaratkan bahwa pemberi lisensi mendukung Anda atau penggunaan Anda.
-
BerbagiSerupa — Apabila Anda menggubah, mengubah, atau membuat turunan dari materi ini, Anda harus menyebarluaskan kontribusi Anda di bawah lisensi yang sama dengan materi asli.