Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah

DOI: https://doi.org/10.52158/jacost.v4i1.491
I will put the dimension here
Keywords: House, Prediction, Machine, Learning, Linear, Regression, Random, Forest, Comparative, Price

Abstract

The need for a place to live is one that many people prepare, both millennials and adults and the elderly. With the continued increase in population growth in Indonesia and increasing public interest in buying a place to live early on, this can make not all groups of people have a place to live or a house that is quite livable. Related to this, the public needs up-to-date information related to predictions of house prices both for housing and second-hand housing prices for planning purposes in the future. The purpose of this study is to carry out a comparative analysis of the prediction results of house prices with several Machine Learning algorithms consist of Linear Regression, Random Forest Regression and Gradient Boosted Trees Regression. Evaluation for all the method applying Cross-Validation. The evaluation is seen from the smallest Root Mean Square Error (RMSE) error rate of each testing method. The results of this study are the Random Forest Regression obtained an RMSE value of 0.440, the Linear Regression model obtained an RMSE value of 0.515 and the RMSE value of Gradient Boosted Trees Regression of 0.508. The results were obtained from testing a dataset of 2011 records with a division of 80% for data training and 20% for data testing, the data has 6 attributes used in testing including house prices, land area, building area, number of bathrooms, number of bedrooms and the number of garages. In this study, prediction results using the Random Forest Regression method yielded the highest accuracy of 81.5% compared to the Linear Regression and Gradient Boosted Trees Regression methods.

Downloads

Download data is not yet available.

References

A. Asrirawan, S. U. Permata, and M. I. Fauzan, “Pendekatan Univariate Time Series Modelling untuk Prediksi Kuartalan Pertumbuhan Ekonomi Indonesia Pasca Vaksinasi COVID-19,” Jambura J. Math., vol. 4, no. 1, pp. 86–103, 2022.

R. P. Sari and L. Novitasari, “Sistem Penentuan Kelayakan Kredit Pemilikan Rumah Non-Subsidi Menggunakan Metode Weight Product,” J. Rekayasa Teknol. Inf., vol. 6, no. 1, p. 18, 2022.

D. D. Wijaya and N. Anastasia, “Pertimbangan Generasi Milenial Pada Kepemilikan Rumah dan Kendala Finansial,” J. Manaj. Aset dan Penilai., vol. 1, no. 2, pp. 11–20, 2021.

A. Mendrofa, H. Wibowo, I. Sofyan, T. Hendrawan, and W. Witria, “Faktor-Faktor Yang Berpengaruh Dalam Keputusan Pembelian Rumah Untuk Masyarakat Berpenghasilan Rendah,” Indones. Bus. Rev., vol. 1, no. 1, pp. 35–50, 2018.

A. B. Adetunji, O. N. Akande, F. A. Ajala, O. Oyewo, Y. F. Akande, and G. Oluwadara, “House Price Prediction using Random Forest Machine Learning Technique,” Procedia Comput. Sci., vol. 199, pp. 806–813, 2021.

F. R. Lumbanraja, R. A. Saputra, K. Muludi, A. Hijriani, and A. Junaidi, “Implementasi Support Vector Machine Dalam Memprediksi Harga Rumah Pada Perumahan Di Kota Bandar Lampung,” J. Pepadun, vol. 2, no. 3, pp. 327–335, 2021.

C. Haryanto, N. Rahaningsih, F. M. Basysyar, K. Cirebon, R. F. Regression, and H. Rumah, “KOMPARASI ALGORITMA MACHINE LEARNING DALAM MEMPREDIKSI HARGA RUMAH,” vol. 1, no. 1, pp. 533–539, 2023.

M. L. Mu’tashim, T. Muhayat, S. A. Damayanti, H. N. Zaki, and R. Wirawan, “Analisis Prediksi Harga Rumah Sesuai Spesifikasi Menggunakan Multiple Linear Regression,” Inform. J. Ilmu Komput., vol. 17, no. 3, p. 238, 2021.

Mikhael, F. Andreas, and U. Enri, “Perbandingan Algoritma Linear Regression, Neural Network, Deep Learning, Dan K-Nearest Neighbor (K-Nn) Untuk Prediksi Harga Bitcoin,” J. Sist. Inf., vol. 14, no. 1, pp. 2450–2464, 2022.

Diana Tri Susetianingtias, Eka Patriya, and Rodiah, “Model Random Forest Regression Untuk Peramalan Penyebaran Covid-19 Di Indonesia,” Decod. J. Pendidik. Teknol. Inf., vol. 2, no. 2, pp. 84–95, 2022.

F. Febyanti, “Pemodelan Faktor-Faktor yang Mempengaruhi Harga Rumah di Jabodetabek Menggunakan Metode Regresi Probit,” J. Ris. Stat., pp. 50–56, 2022.

M. T. R. Ali, “Pengaruh Harga, Kualitas Produk, Lokasi, dan Fasilitas Terhadap Keputusan Pembelian Rumah,” J. Ilmu dan Ris. Manaj., vol. 6, no. 9, pp. 1–20, 2017.

H. Nora Pitri Nainggolan, “JURNAL ILMIAH MANAJEMEN dan BISNIS,” J. iImiah Manaj. Dan Bisnisurnal iImiah Manaj. Dan Bisnis, vol. 19, no. 1, pp. 64–72, 2018.

R. Yanto, “Implementasi Data Mining Estimasi Ketersediaan Lahan Pembuangan Sampah menggunakan Algoritma Simple Linear Regression,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 1, pp. 361–366, 2018.

L. H. Tresnawati, W. A. Kusuma, S. H. Wijaya, and L. S. Hasibuan, “Asosiasi Single Nucleotide Polymorphism pada Diabetes Mellitus Tipe 2 Menggunakan Random Forest Regression,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 4, p. 320, 2019

Published
2023-07-01
How to Cite
[1]
E. Fitri, “Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah”, J. Appl. Comput. Sci. Technol., vol. 4, no. 1, pp. 58 - 64, Jul. 2023.
Section
Articles
Bookmark and Share