Klasifikasi Metode Data Mining untuk Prediksi Kelulusan Tepat Waktu Mahasiswa dengan Algoritma Naïve Bayes, Random Forest, Support Vector Machine (SVM) dan Artificial Neural Nerwork (ANN)

  • Satrio Junaidi Universitas PGRI Sumatera Barat
  • Rani Valicia Anggela Universitas PGRI Sumatera Barat
  • Delsi Kariman Universitas PGRI Sumatera Barat
DOI: https://doi.org/10.52158/jacost.v5i1.489
I will put the dimension here
Keywords: : data mining, naïve bayes, python 3, tepat waktu

Abstract

Timely graduation of students is essential for determining the quality of college. Universities must know the percentage of students' ability to complete their studies on time. So, to deal with this problem, data mining classification is carried out to predict student graduation on time to find patterns for student on-time graduation predictions. This research can yield new information to help colleges anticipate student graduations that are not on time. The method used is a classification data mining method with 4 algorithms: naïve Bayes, random forest, support vector machine (SVM), and artificial neural network (ANN). The attributes used are gender, parental income, length of guidance, working student status or not, semester 1 to semester 8 grades, and GPA. This study used Python 3 programming language on jupyter notebooks in Anaconda to process datasets. The distribution of datasets is divided by 70% for training data and 30% for testing data. The results of this study were obtained with the best algorithm accuracy in the support vector machine (SVM) algorithm is 0.94. Based on the results of this study, the accuracy is good for predicting student graduation on time.

Downloads

Download data is not yet available.

References

U. R. Habibah and A. Solichin, “Prediksi Kelulusan Mahasiswa Dengan Metode Naïve Bayes dan Artificial Neural Network: Studi Kasus Fakultas Teknik UNIS Tangerang,” Fakt. Exacta, vol. 15, no. 1, pp. 73–83, 2022.

D. Anugrah Putra and M. Kamayani, “Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Naive Bayes di Program Studi Teknik Informatika UHAMKA,” Pros. Semin. Nas. Teknoka, vol. 5, no. 2502, pp. 34–40, 2020, doi: 10.22236/teknoka.v5i.331.

Hartatik, “Optimasi Model Prediksi Kelulusan Mahasiswa Menggunakan Algoritma Naïve Bayes,” IJAI (Indonesian J. Appl. Informatics), vol. 5, 2020.

M. Munawir and T. Iqbal, “Prediksi Kelulusan Mahasiswa menggunakan Algoritma Naive Bayes (Studi Kasus 5 PTS di Banda Aceh),” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 3, no. 2, p. 59, 2019, doi: 10.35870/jtik.v3i2.77.

R. Sepriansyah, S. D. Purnamasari, K. R. N. Wardani, and N. Halim, “Prediksi Kelulusan Mahasiswa Fakultas Teknik Universitas Bina Darma Menggunakan Algoritma Naïve Bayes,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 1, pp. 313–322, 2023, doi: 10.29100/jipi.v8i1.3459.

A. Fatkhudin, M. Y. Febrianto, F. A. Artanto, M. W. N. Hadinata, and R. Fahlevi, “Algoritma Decision Tree C.45 Dalam Analisa Kelulusan Mahasiswa Program Studi Manajemen Informatika Umpp,” J. Ilm. ILMU Komput., vol. 8, no. 2, pp. 83–86, 2022, doi: 10.35329/jiik.v8i2.240.

R. H. Sukarna and Y. Ansori, “Implementasi Data Mining Menggunakan Metode Naive Bayes Dengan Feature Selection Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu,” J. Ilm. Sains dan Teknol., vol. 6, no. 1, pp. 50–61, 2022, doi: 10.47080/saintek.v6i1.1467.

T. M. Satrio Junaidi, “Metode Data Mining Association Rule Dengan Algoritma Fp-Growth Untuk Mengetahui Kelulusan Tepat Waktu Mahasiswa (Studi Kasus Stkip Pgri Sumatera Barat),” J. Edik Inform., vol. 7, no. 1, pp. 9–18, 2018.

S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.

A. Darmawan, I. Yudhisari, A. Anwari, and M. Makruf, “Pola Prediksi Kelulusan Siswa Madrasah Aliyah Swasta dengan Support Vector Machine dan Random Forest,” J. Minfo Polgan, vol. 12, no. 1, pp. 387–400, 2023, doi: 10.33395/jmp.v12i1.12388.

E. Rizky and H. Himawan, “Algoritma Support Vector Machine Untuk Memprediksi Nilai Ujian Nasional,” J. Teknol. Inf., vol. 11, pp. 172–184, 2015, [Online]. Available: http://research.pps.dinus.ac.id

J. Kusuma, Rubianto, R. Rosnelly, Hartono, and B. H. Hayadi, “Klasifikasi Penyakit Daun Pada Tanaman Jagung Menggunakan Algoritma Support Vector Machine, K-Nearest Neighbors dan Multilayer Perceptron,” J. Appl. Compt. Sci. Technol., vol. 4, no. 1, pp. 1–6, 2023, doi: 10.52158/jacost.v4i1.484.

E. Fitri, “Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah,” J. Appl. Comput. Sci. Technol., vol. 4, no. 1, pp. 58–64, 2023, doi: 10.52158/jacost.v4i1.491.

D. Gellysa Urva, Isa Albanna, Muchamad Sobri Sungkar, S. R. I Made Agus Oka Gunawan, Iwan Adhicandra, H. Rifky Lana Rahardian, H. Rahmadya Trias Handayanto, Anak Agung Gede Bagus Ariana, and S. J. Prima Dina Atika, Penerapan Data Mining Di Berbagai Bidang (Konsep, Metode, dan Studi Kasus). Jambi: SonPedia, 2023.

A. W. Zunan Setiawan, Muhammad Fajar, Arif Mudi Priyatno, Anggi Yhurinda Perdana Putri, Mediana Aryuni, Siti Yuliyanti, Harya Widiputra, Budanis Dwi Meilani, Rohmat Nur Ibrahim, Rezania Agramanisti Azdy, Satrio Junaidi, Buku Ajar Data Mining. Jambi: SonPedia, 2023.

Published
2024-06-30
How to Cite
[1]
Satrio Junaidi, R. Valicia Anggela, and D. Kariman, “Klasifikasi Metode Data Mining untuk Prediksi Kelulusan Tepat Waktu Mahasiswa dengan Algoritma Naïve Bayes, Random Forest, Support Vector Machine (SVM) dan Artificial Neural Nerwork (ANN)”, J. Appl. Comput. Sci. Technol., vol. 5, no. 1, pp. 109 - 119, Jun. 2024.
Section
Articles
Bookmark and Share