Arsitektur Convolutional Neural Network untuk Model Klasifikasi Citra Batik Yogyakarta

  • Arya Prayoga Universitas Muhammadiyah Magelang
  • Maimunah Universitas Muhammadiyah Magelang https://orcid.org/0000-0002-3730-8821
  • Pristi Sukmasetya Universitas Muhammadiyah Magelang https://orcid.org/0000-0002-4038-6695
  • Muhammad Resa Arif Yudianto Universitas Muhammadiyah Magelang
  • Rofi Abul Hasani Universitas Muhammadiyah Magelang
DOI: https://doi.org/10.52158/jacost.v4i2.486
I will put the dimension here
Keywords: Yogyakarta Batik Motifs, Image Classification, CNN Architecture

Abstract

Batik is an Indonesian culture that has been recognized as a world heritage by UNESCO. Indonesian batik has a variety of different motifs in each region. One area that is famous for its batik motifs is Yogyakarta. Yogyakarta has a variety of batik motifs such as ceplok, kawung, and parang which can be differentiated based on the pattern. Yogyakarta batik motifs need to be preserved so they do not experience extinction, one way is by introducing Yogyakarta batik motifs. The recognition of Yogyakarta batik motifs can utilize technology to classify images of Yogyakarta batik motifs based on patterns using the Convolutional Neural Network (CNN). The Yogyakarta batik motif images used for classification totaled 600 images consisting of 3 different motifs such as ceplok, kawung, and parang. Image classification using CNN depends on the architectural model used. The CNN architecture consists of two stages, namely Convolutional for feature extraction and Neural Network for classification. The CNN architectural models made for the introduction of Yogyakarta batik motifs totaled 7 models which were distinguished at the feature extraction stage. The highest accuracy results in the classification of Yogyakarta batik motif images using CNN were obtained in the 6th model. The 6th model has an accuracy of 87.83%, an average precision of 88.46% and an average recall of 87.66%. The accuracy, precision, and recall values ​​obtained by the 6th model are above 80%, which means that the 6th model can classify Yogyakarta batik motifs quite well.

Downloads

Download data is not yet available.

References

A. A. Trixie, “Filosofi Motif Batik sebagai Identitas Bangsa Indonesia,” Folio, vol. 1, no. 1, pp. 1–9, 2020, [Online]. Available: https://journal.uc.ac.id/index.php/FOLIO/article/view/1380

M. U. Januarko, “Kemitraan Masyarakat Dan Strategi Pemasaran Batik Kelompok Pembatik Palbatu,” Digilib.Esaunggul.Ac.Id, vol. 6, no. 2, pp. 145–149, 2020, [Online]. Available: https://digilib.esaunggul.ac.id/public/UEU-Journal-18001-11_0740.pdf

A. Wulandari, Batik Nusantara: Makna filosofis, cara pembuatan, dan industri batik. Penerbit Andi, 2022. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=mm13EAAAQBAJ&oi=fnd&pg=PR5&dq=batik+wulandari&ots=fEnBR85C_r&sig=gYkhBQ4X44pwXJbzJLl0ru9unFc&redir_esc=y#v=onepage&q=batik wulandari&f=false

L. M. Hakim, “Batik Sebagai Warisan Budaya Bangsa dan Nation Brand Indonesia,” Nation State J. Int. Stud., vol. 1, no. 1, pp. 61–90, 2018, doi: 10.24076/nsjis.2018v1i1.90.

A. Tjahyanto and F. J. Atletiko, “Peningkatan Kinerja Pengklasifikasi Objek Bawah Laut dengan Deep Learning,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 3, pp. 753–760, 2022, doi: 10.30812/matrik.v21i3.1466.

B. Yanto, L. Fimawahib, A. Supriyanto, B. H. Hayadi, and R. R. Pratama, “Klasifikasi Tekstur Kematangan Buah Jeruk Manis Berdasarkan Tingkat Kecerahan Warna dengan Metode Deep Learning Convolutional Neural Network,” INOVTEK Polbeng - Seri Inform., vol. 6, no. 2, p. 259, 2021, doi: 10.35314/isi.v6i2.2104.

N. Kumari and S. Saxena, “Review of brain tumor segmentation and classification,” in 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), 2018, pp. 1–6.

A. Rohim, Y. A. Sari, and Tibyani, “Convolution neural network (cnn) untuk pengklasifikasian citra makanan tradisional,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 7, pp. 7038–7042, 2019, [Online]. Available: http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5851/2789

R. Indraswari, W. Herulambang, and R. Rokhana, “Deteksi Penyakit Mata Pada Citra Fundus Menggunakan Convolutional Neural Network (CNN),” Techno.Com, vol. 21, no. 2, pp. 378–389, 2022, doi: 10.33633/tc.v21i2.6162.

S. F. Tumewu, D. H. Setiabud, and I. Sugiarto, “Klasifikasi Motif Batik menggunakan metode Deep Convolutional Neural Network dengan Data Augmentation,” J. Infra, vol. 8, no. 2, pp. 189–194, 2020, [Online]. Available: https://publication.petra.ac.id/index.php/teknik-informatika/article/view/10519

M. Malika and E. Widodo, “Implementasi Deep Learning Untuk Klasifikasi Gambar Menggunakan Convolutional Neural Network (Cnn) Pada Batik Sasambo,” Pattimura Proceeding Conf. Sci. Technol., pp. 335–340, 2019, [Online]. Available: https://ojs3.unpatti.ac.id/index.php/pcst/article/view/5612

H. Fonda, Y. Irawan, and A. Febriani, “Klasifikasi Batik Riau Dengan Menggunakan Convolutional Neural Networks (Cnn),” J. Ilmu Komput., vol. 9, no. 1, pp. 7–10, 2020, doi: 10.33060/jik/2020/vol9.iss1.144.

M. R. A. Yudianto, K. Kusrini, and H. Al Fatta, “Analisis Pengaruh Tingkat Akurasi Klasifikasi Citra Wayang dengan Algoritma Convolitional Neural Network,” J. Teknol. Inf., vol. 4, no. 2, pp. 182–191, 2020, doi: 10.36294/jurti.v4i2.1319.

B. Nugroho and E. Y. Puspaningrum, “Kinerja Metode CNN untuk Klasifikasi Pneumonia dengan Variasi Ukuran Citra Input,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 3, p. 533, 2021, doi: 10.25126/jtiik.2021834515.

S. F. Handono, T. A. Fetty, and R. Basuki, “Implementasi Convolutional Neural Network (CNN) Untuk Deteksi Retinopati Diabetik,” J. Inform. dan Sist. Inf., vol. 1, no. 1, pp. 669–678, 2020, [Online]. Available: http://download.garuda.kemdikbud.go.id/article.php?article=1757872&val=18720&title=Implementasi Convolutional Neural Network CNN Untuk Deteksi Retinopati Diabetik

Ridho Aji Pangestu, Basuki Rahmat, and Fetty Tri Anggraeny, “Implementasi Algoritma Cnn Untuk Klasifikasi Citra Lahan Dan Perhitungan Luas,” J. Inform. dan Sist. Inf., vol. 1, no. 1, pp. 166–174, 2020, [Online]. Available: http://download.garuda.kemdikbud.go.id/article.php?article=1757847&val=18720&title=Implementasi Algoritma CNN untuk Klasifikasi Citra Lahan dan Perhitungan Luas

N. D. Miranda, L. Novamizanti, and S. Rizal, “Convolutional Neural Network Pada Klasifikasi Sidik Jari Menggunakan Resnet-50,” J. Tek. Inform., vol. 1, no. 2, pp. 61–68, 2020, doi: 10.20884/1.jutif.2020.1.2.18.

A. Y. Zahrah, A. Arifianto, and F. Sthevanie, “Perbandingan Metode Convolutional Neural Network pada Klasifikasi Sel Darah Putih Menggunakan Sistem CPU dan GPU,” e-Proceeding Eng., vol. 7, no. 1, pp. 2627–2635, 2020, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/11944

B. P. Pratiwi and A. Silvia, “Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi WSN Menggunakan Confusion Matrix,” vol. 6, no. 2, pp. 66–75, 2020, [Online]. Available: https://journal.upgris.ac.id/index.php/JIU/article/view/6552/3859

K. Wabang, Oky Dwi Nurhayati, and Farikhin, “Application of The Naïve Bayes Classifier Algorithm to Classify Community Complaints,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 5, pp. 872–876, 2022, doi: 10.29207/resti.v6i5.4498

Published
2023-11-18
How to Cite
[1]
A. Prayoga, Maimunah, P. Sukmasetya, Muhammad Resa Arif Yudianto, and Rofi Abul Hasani, “Arsitektur Convolutional Neural Network untuk Model Klasifikasi Citra Batik Yogyakarta”, J. Appl. Comput. Sci. Technol., vol. 4, no. 2, pp. 82 - 89, Nov. 2023.
Section
Articles
Bookmark and Share