A Systematic Literature Review of Retrieval-Augmented Generation: Methods, Applications, and Future Research Directions

Authors

  • Muhammad Rizky Hajar Universitas Amikom Yogyakarta
  • Ema Utami Universitas Amikom Yogyakarta
  • Alva Hendi Muhammad Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.52158/jacost.v6i2.1170

Keywords:

retrieval-augmented generation, systematic literature review, methods, applications, challenges, future research

Abstract

Retrieval-Augmented Generation (RAG) represents a growing research direction in the advancement of large language models (LLMs) by incorporating external information sources into the response generation process. As LLM-based systems are increasingly deployed in information-sensitive domains such as healthcare, education, and law, the demand for responses that are not only fluent but also verifiable and context-aware has become more pronounced. This study conducts a systematic literature review (SLR) of 100 recent publications to examine methodological approaches, application domains, technical challenges, and research contributions related to RAG. The review draws on studies indexed in major academic databases, including IEEE, ACM, and Springer, and applies structured inclusion and exclusion criteria to ensure analytical rigor. The findings reveal a strong emphasis on architectural optimization, particularly in the interaction between retrieval and generation components, alongside widespread adoption in domain-specific contexts. Persistent challenges identified across the literature include limitations in retriever effectiveness, system integration complexity, and the absence of standardized evaluation benchmarks. Overall, this review provides a structured synthesis of current RAG research and highlights directions for future investigation and practical deployment..

Downloads

Download data is not yet available.

References

[1] P. S. H. Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks,” arXiv Comput. Lang., 2020, [Online]. Available: https://arxiv.org/pdf/2005.11401

[2] M. Murtiyoso, I. Tahyudin, and B. Berlilana, “A Systematic Review of Retrieval-Augmented Generation for Enhancing Domain-Specific Knowledge in Large Language Models,” Sinkron, vol. 9, no. 2, pp. 969–977, 2025, doi: 10.33395/sinkron.v9i2.14824.

[3] S. Liu, A. B. McCoy, and A. Wright, “Improving large language model applications in biomedicine with retrieval-augmented generation: a systematic review, meta-analysis, and clinical development guidelines,” J. Am. Med. Informatics Assoc., vol. 32, no. 4, pp. 605–615, Apr. 2025, doi: 10.1093/jamia/ocaf008.

[4] L. M. Amugongo, P. Mascheroni, S. Brooks, S. Doering, and J. Seidel, “Retrieval augmented generation for large language models in healthcare: A systematic review,” PLOS Digit. Heal., vol. 4, no. 6, p. e0000877, Jun. 2025, doi: 10.1371/journal.pdig.0000877.

[5] B. Kitchenham, “Procedures for Performing Systematic Reviews,” Keele University, 2004.

[6] R. Pal, S. Kar, and D. K. Prasad, “A Self-Supervised Generative Fine-Tune of CLIP for VQA for Visually Impaired,” in 2024 IEEE 21st India Council International Conference (INDICON), IEEE, 2024, pp. 1–6. doi: 10.1109/INDICON63790.2024.10958384.

[7] C.-H. Chou and C.-H. Wu, “A Translative Research Assistant on Retrieval-Augmented Generation Enhanced by Keyword Extraction in the Case of Asian Studies,” in 2024 Artificial Intelligence x Humanities, Education, and Art (AIxHEART), IEEE, 2024, pp. 76–83. doi: 10.1109/AIxHeart62327.2024.00025.

[8] M. Zhang, Y. Shen, J. Yin, S. Lu, and X. Wang, “ADAGENT: Anomaly Detection Agent With Multimodal Large Models in Adverse Environments,” IEEE Access, vol. 12, pp. 172061–172074, 2024, doi: 10.1109/ACCESS.2024.3480250.

[9] J. C. Dos Santos Junior, R. Hu, R. Song, and Y. Bai, “Domain-Driven LLM Development: Insights into RAG and Fine-Tuning Practices,” in KDD ’24: The 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ACM, 2024, pp. 6416–6417. doi: 10.1145/3637528.3671445.

[10] S. Wang, E. Khramtsova, S. Zhuang, and G. Zuccon, “FeB4RAG: Evaluating Federated Search in the Context of Retrieval Augmented Generation,” in SIGIR 2024: The 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, 2024, pp. 763–773. doi: 10.1145/3626772.3657853.

[11] S. Yang et al., “Retrieval-Augmented Generation with Quantized Large Language Models: A Comparative Analysis,” ACM Int. Conf. Proceeding Ser., pp. 120–124, Nov. 2023, doi: 10.1145/3653081.3653102;WGROUP:STRING:ACM.

[12] G. Hill, M. Waddington, and L. Qiu, “From pen to algorithm: optimizing legislation for the future with artificial intelligence,” AI Soc., 2024, doi: 10.1007/s00146-024-02062-3.

[13] B. Sarmah, D. Mehta, B. Hall, R. Rao, S. Patel, and S. Pasquali, “HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation for Efficient Information Extraction,” in ICAIF ’24: 5th ACM International Conference on AI in Finance, ACM, 2024, pp. 608–616. doi: 10.1145/3677052.3698671.

[14] B. Zhan, A. Li, X. Yang, D. He, Y. Duan, and S. Yan, “RARoK:Retrieval-Augmented Reasoning on Knowledge for Medical Question Answering,” in 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2024, pp. 2837–2843. doi: 10.1109/BIBM62325.2024.10822341.

[15] S. Toro et al., “Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI),” J. Biomed. Semantics, vol. 15, no. 1, p. 19, 2024, doi: 10.1186/s13326-024-00320-3.

[16] M. Mudassar Yamin, E. Hashmi, M. Ullah, and B. Katt, “Applications of LLMs for Generating Cyber Security Exercise Scenarios,” IEEE Access, vol. 12, pp. 143806–143822, 2024, doi: 10.1109/ACCESS.2024.3468914.

[17] S. Sen, V. Gonzalez, E. J. Husom, S. Tverdal, S. Tokas, and S. O. Tjøsvoll, “ERG-AI: enhancing occupational ergonomics with uncertainty-aware ML and LLM feedback,” Appl. Intell., vol. 54, no. 23, pp. 12128–12155, 2024, doi: 10.1007/s10489-024-05796-1.

[18] U. Maes, L. Michiels, and A. Smets, “GenUI(ne) CRS: UI Elements and Retrieval-Augmented Generation in Conversational Recommender Systems with LLMs,” in RecSys ’24: 18th ACM Conference on Recommender Systems, ACM, 2024, pp. 1177–1179. doi: 10.1145/3640457.3691697.

[19] Q. Wang, L.-I. Wu, and G. Li, “PIRTRE-C: A Two-Stage Retrieval and Reranking Enhanced Framework for Improving Chinese Psychological Counseling,” in 2024 IEEE International Conference on Medical Artificial Intelligence (MedAI), IEEE, 2024, pp. 337–347. doi: 10.1109/MedAI62885.2024.00051.

[20] H. Xiong et al., “When Search Engine Services Meet Large Language Models: Visions and Challenges,” IEEE Trans. Serv. Comput., vol. 17, no. 6, pp. 4558–4577, Nov. 2024, doi: 10.1109/TSC.2024.3451185.

[21] E. J. Robinson et al., “Physician vs. AI-generated messages in urology: evaluation of accuracy, completeness, and preference by patients and physicians,” World J. Urol., vol. 43, no. 1, p. 48, 2024, doi: 10.1007/s00345-024-05399-y.

[22] J. Schneider, “Explainable Generative AI (GenXAI): a survey, conceptualization, and research agenda,” Artif. Intell. Rev., vol. 57, no. 11, p. 289, 2024, doi: 10.1007/s10462-024-10916-x.

[23] H. Xu, F. Omitaomu, S. Sabri, S. Zlatanova, X. Li, and Y. Song, “Leveraging generative AI for urban digital twins: a scoping review on the autonomous generation of urban data, scenarios, designs, and 3D city models for smart city advancement,” Urban Informatics, vol. 3, no. 1, p. 29, 2024, doi: 10.1007/s44212-024-00060-w.

[24] J. Jang and W.-S. Li, “AU-RAG: Agent-based Universal Retrieval Augmented Generation,” in SIGIR-AP 2024: Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region, ACM, 2024, pp. 2–11. doi: 10.1145/3673791.3698416.

[25] S. Amri, S. Bani, and R. Bani, “Moroccan legal assistant Enhanced by Retrieval-Augmented Generation Technology,” in NISS 2024: The 7th International Conference On Networking, Intelligents Systems and Security, ACM, 2024, pp. 1–5. doi: 10.1145/3659677.3659737.

[26] A. T. Strand, S. Gautam, C. Midoglu, and P. Halvorsen, “SoccerRAG: Multimodal Soccer Information Retrieval via Natural Queries,” in 2024 International Conference on Content-Based Multimedia Indexing (CBMI), IEEE, 2024, pp. 1–7. doi: 10.1109/CBMI62980.2024.10859209.

[27] D. Malerba and V. Pasquadibisceglie, “Data-Centric AI,” J. Intell. Inf. Syst., vol. 62, no. 6, pp. 1493–1502, 2024, doi: 10.1007/s10844-024-00901-9.

[28] M. A. Arefeen, B. Debnath, M. Y. S. Uddin, and S. Chakradhar, “iRAG: Advancing RAG for Videos with an Incremental Approach,” in CIKM ’24: The 33rd ACM International Conference on Information and Knowledge Management, ACM, 2024, pp. 4341–4348. doi: 10.1145/3627673.3680088.

[29] J. I. Ahad et al., “Empowering Meta-Analysis: Leveraging Large Language Models for Scientific Synthesis,” in 2024 IEEE International Conference on Big Data (BigData), IEEE, 2024, pp. 1615–1624. doi: 10.1109/BigData62323.2024.10825310.

[30] M. Ding, S. Dong, and R. Grewal, “Generative AI and Usage in Marketing Classroom,” Cust. Needs Solut., vol. 11, no. 1, p. 5, 2024, doi: 10.1007/s40547-024-00145-2.

[31] S. Han, H. Kang, B. Jin, X.-Y. Liu, and S. Y. Yang, “XBRL Agent: Leveraging Large Language Models for Financial Report Analysis,” in ICAIF ’24: 5th ACM International Conference on AI in Finance, ACM, 2024, pp. 856–864. doi: 10.1145/3677052.3698614.

[32] B. Peng, X. Wang, and L. Xu, “‘TILSE’ Framework for RAG-Based AIGC Feedback Prompts: A Modular and Personalized Intelligent Feedback Generation Method,” ACM Int. Conf. Proceeding Ser., pp. 398–403, Nov. 2024, doi: 10.1145/3700297.3700365;CSUBTYPE:STRING:CONFERENCE.

[33] H. Chandrasekar, S. Gupta, C.-T. Liu, and C.-H. Tsai, “Leveraging Large Language Models for Effective Organizational Navigation,” in dg.o 2024: 25th Annual International Conference on Digital Government Research, ACM, 2024, pp. 1020–1022. doi: 10.1145/3657054.3657272.

[34] R. C. Barron et al., “Domain-Specific Retrieval-Augmented Generation Using Vector Stores, Knowledge Graphs, and Tensor Factorization,” in 2024 International Conference on Machine Learning and Applications (ICMLA), IEEE, 2024, pp. 1669–1676. doi: 10.1109/ICMLA61862.2024.00258.

[35] C. Arora, T. Herda, and V. Homm, “Generating Test Scenarios from NL Requirements Using Retrieval-Augmented LLMs: An Industrial Study,” 2024 IEEE 32nd Int. Requir. Eng. Conf., pp. 240–251, Jun. 2024, doi: 10.1109/RE59067.2024.00031.

[36] K. Rangan and Y. Yin, “A fine-tuning enhanced RAG system with quantized influence measure as AI judge,” Sci. Rep., vol. 14, no. 1, p. 27446, 2024, doi: 10.1038/s41598-024-79110-x.

[37] X. Liu, Y. Zhu, T. Pang, K. Xue, X. Zhang, and C. Fan, “Medical Document Embedding Enhancement with Heterogeneous Mixture-of-Experts,” in 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2024, pp. 2238–2243. doi: 10.1109/BIBM62325.2024.10822374.

[38] D. Leuthe, T. Meyer-Hollatz, T. Plank, and A. Senkmüller, “Towards Sustainability of AI – Identifying Design Patterns for Sustainable Machine Learning Development,” Inf. Syst. Front., vol. 26, no. 6, pp. 2103–2145, 2024, doi: 10.1007/s10796-024-10526-6.

[39] C. Novelli, G. Formisano, P. Juneja, G. Sandri, and L. Floridi, “Artificial Intelligence for the Internal Democracy of Political Parties,” Minds Mach., vol. 34, no. 4, p. 36, 2024, doi: 10.1007/s11023-024-09693-x.

[40] D. Grewal, C. B. Satornino, T. Davenport, and A. Guha, “How generative AI Is shaping the future of marketing,” J. Acad. Mark. Sci., 2024, doi: 10.1007/s11747-024-01064-3.

[41] S. Beck, M. Kuhner, M. Haar, A. Daubmann, M. Semmann, and S. Kluge, “Evaluating the accuracy and reliability of AI chatbots in disseminating the content of current resuscitation guidelines: a comparative analysis between the ERC 2021 guidelines and both ChatGPTs 3.5 and 4,” Scand. J. Trauma. Resusc. Emerg. Med., vol. 32, no. 1, p. 95, Sep. 2024, doi: 10.1186/s13049-024-01266-2.

[42] C. C. Y. Gue et al., “Evaluating the OpenAI’s GPT-3.5 Turbo’s performance in extracting information from scientific articles on diabetic retinopathy,” Syst. Rev., vol. 13, no. 1, p. 135, 2024, doi: 10.1186/s13643-024-02523-2.

[43] J. Zhang, R. Xiang, Z. Kuang, B. Wang, and Y. Li, “ArchGPT: harnessing large language models for supporting renovation and conservation of traditional architectural heritage,” Herit. Sci., vol. 12, no. 1, p. 220, 2024, doi: 10.1186/s40494-024-01334-x.

[44] X. Luo et al., “Large language models surpass human experts in predicting neuroscience results,” Nat. Hum. Behav., vol. 9, no. 2, pp. 305–315, 2024, doi: 10.1038/s41562-024-02046-9.

[45] A. Pahud De Mortanges et al., “Orchestrating explainable artificial intelligence for multimodal and longitudinal data in medical imaging,” npj Digit. Med., vol. 7, no. 1, p. 195, 2024, doi: 10.1038/s41746-024-01190-w.

[46] C. Silvestri et al., “Evaluation of a novel large language model (LLM)-powered chatbot for oral boards scenarios,” Glob. Surg. Educ. - J. Assoc. Surg. Educ., vol. 3, no. 1, p. 112, 2024, doi: 10.1007/s44186-024-00303-z.

[47] Y. Hu et al., “APTNESS: Incorporating Appraisal Theory and Emotion Support Strategies for Empathetic Response Generation,” in CIKM ’24: The 33rd ACM International Conference on Information and Knowledge Management, ACM, 2024, pp. 900–909. doi: 10.1145/3627673.3679687.

[48] J. Dou and X. Zhao, “Design and Application of Online Teaching Resource Platform for College English Based on Retrieval-Augmented Generation,” in EKI 2024: The 2nd International Conference on Educational Knowledge and Informatization, ACM, 2024, pp. 111–115. doi: 10.1145/3691720.3691739.

[49] X. Yu, C. Li, M. Pan, and X. Li, “DroidCoder: Enhanced Android Code Completion with Context-Enriched Retrieval-Augmented Generation,” in ASE ’24: 39th IEEE/ACM International Conference on Automated Software Engineering, ACM, 2024, pp. 681–693. doi: 10.1145/3691620.3695063.

[50] J. Guo, J. Huang, Z. Zhao, J. Chen, Y. Weng, and G. Lin, “EFRAG:Embedding-FineTuning Retrieval Augmented Generation for QA in power projects,” in PRIS 2024: 2024 6th International Conference on Pattern Recognition and Intelligent Systems, ACM, 2024, pp. 21–27. doi: 10.1145/3689218.3689225.

[51] Y. Zhu et al., “EMERGE: Enhancing Multimodal Electronic Health Records Predictive Modeling with Retrieval-Augmented Generation,” in CIKM ’24: The 33rd ACM International Conference on Information and Knowledge Management, ACM, 2024, pp. 3549–3559. doi: 10.1145/3627673.3679582.

[52] Y. Xu, T. Cai, J. Jiang, and X. Song, “Face4Rag: Factual Consistency Evaluation for Retrieval Augmented Generation in Chinese,” in KDD ’24: The 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ACM, 2024, pp. 6083–6094. doi: 10.1145/3637528.3671656.

[53] T. Cai et al., “FoRAG: Factuality-optimized Retrieval Augmented Generation for Web-enhanced Long-form Question Answering,” in KDD ’24: The 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ACM, 2024, pp. 199–210. doi: 10.1145/3637528.3672065.

[54] Z. Zhou et al., “Img2Loc: Revisiting Image Geolocalization using Multi-modality Foundation Models and Image-based Retrieval-Augmented Generation,” in SIGIR 2024: The 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, 2024, pp. 2749–2754. doi: 10.1145/3626772.3657673.

[55] X. Bai, X. Wu, I. Stojkovic, and K. Tsioutsiouliklis, “Leveraging Large Language Models for Improving Keyphrase Generation for Contextual Targeting,” in CIKM ’24: The 33rd ACM International Conference on Information and Knowledge Management, ACM, 2024, pp. 4349–4357. doi: 10.1145/3627673.3680093.

[56] S. Xu, L. Pang, J. Xu, H. Shen, and X. Cheng, “List-aware Reranking-Truncation Joint Model for Search and Retrieval-augmented Generation,” in WWW ’24: The ACM Web Conference 2024, ACM, 2024, pp. 1330–1340. doi: 10.1145/3589334.3645336.

[57] J. Fang, N. Arechiga, K. Namikoshi, N. Bravo, C. Hogan, and D. A. Shamma, “On LLM Wizards: Identifying Large Language Models’ Behaviors for Wizard of Oz Experiments,” in IVA ’24: ACM International Conference on Intelligent Virtual Agents, ACM, 2024, pp. 1–11. doi: 10.1145/3652988.3673967.

[58] W. Xu, M. Wang, W. Zhou, and H. Li, “P-RAG: Progressive Retrieval Augmented Generation For Planning on Embodied Everyday Task,” in MM ’24: The 32nd ACM International Conference on Multimedia, ACM, 2024, pp. 6969–6978. doi: 10.1145/3664647.3680661.

[59] Z. Hu, C. Wang, Y. Shu, H.-Y. Paik, and L. Zhu, “Prompt Perturbation in Retrieval-Augmented Generation based Large Language Models,” in KDD ’24: The 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, ACM, 2024, pp. 1119–1130. doi: 10.1145/3637528.3671932.

[60] J. Yu et al., “RAG-Guided Large Language Models for Visual Spatial Description with Adaptive Hallucination Corrector,” in MM ’24: The 32nd ACM International Conference on Multimedia, ACM, 2024, pp. 11407–11413. doi: 10.1145/3664647.3688990.

[61] Y. Shi, Q. Tan, X. Wu, S. Zhong, K. Zhou, and N. Liu, “Retrieval-enhanced Knowledge Editing in Language Models for Multi-Hop Question Answering,” in CIKM ’24: The 33rd ACM International Conference on Information and Knowledge Management, ACM, 2024, pp. 2056–2066. doi: 10.1145/3627673.3679722.

[62] F. Wu et al., “Time-Sensitve Retrieval-Augmented Generation for Question Answering,” in CIKM ’24: The 33rd ACM International Conference on Information and Knowledge Management, ACM, 2024, pp. 2544–2553. doi: 10.1145/3627673.3679800.

[63] A. Barghi, “Accelerating Graph Query Languages for Machine Learning and Retrieval Augmented Generation,” in 2024 IEEE International Conference on Big Data (BigData), IEEE, 2024, pp. 3367–3374. doi: 10.1109/BigData62323.2024.10825641.

[64] R. N. Barros, K. K. Arguello, and J. Wehrmann, “Anchor Your Embeddings Through the Storm: Mitigating Instance-to-Document Semantic Gap,” in 2024 International Joint Conference on Neural Networks (IJCNN), IEEE, 2024, pp. 1–8. doi: 10.1109/IJCNN60899.2024.10650518.

[65] M. Fateen, B. Wang, and T. Mine, “Beyond Scores: A Modular RAG-Based System for Automatic Short Answer Scoring with Feedback,” IEEE Access, p. 1, 2024, doi: 10.1109/ACCESS.2024.3508747.

[66] C. Samarajeewa, D. De Silva, E. Osipov, D. Alahakoon, and M. Manic, “Causal Reasoning in Large Language Models using Causal Graph Retrieval Augmented Generation,” in 2024 16th International Conference on Human System Interaction (HSI), IEEE, 2024, pp. 1–6. doi: 10.1109/HSI61632.2024.10613566.

[67] Z. Zhu et al., “Conversational Crowdsensing in the Age of Industry 5.0: A Parallel Intelligence and Large Models Powered Novel Sensing Approach,” IEEE Trans. Comput. Soc. Syst., vol. 11, no. 6, pp. 8046–8063, 2024, doi: 10.1109/TCSS.2024.3451649.

[68] A. Golatkar, A. Achille, L. Zancato, Y.-X. Wang, A. Swaminathan, and S. Soatto, “CPR: Retrieval Augmented Generation for Copyright Protection,” in 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2024, pp. 12374–12384. doi: 10.1109/CVPR52733.2024.01176.

[69] A. Darji, F. Kheni, D. Chodvadia, P. Goel, D. Garg, and B. Patel, “Enhancing Financial Risk Analysis using RAG-based Large Language Models,” in 2024 3rd International Conference on Automation, Computing and Renewable Systems (ICACRS), IEEE, 2024, pp. 754–760. doi: 10.1109/ICACRS62842.2024.10841711.

[70] J. Martínez, B. Llinas, J. G. Botello, J. J. Padilla, and E. Frydenlund, “Enhancing GPT-3.5’s Proficiency in Netlogo Through Few-Shot Prompting and Retrieval-Augmented Generation,” in 2024 Winter Simulation Conference (WSC), IEEE, 2024, pp. 666–677. doi: 10.1109/WSC63780.2024.10838967.

[71] Z. Zhu et al., “Enhancing Large Language Models with Knowledge Graphs for Robust Question Answering,” in 2024 IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS), IEEE, 2024, pp. 262–269. doi: 10.1109/ICPADS63350.2024.00042.

[72] Z. Jiang, Z. Shi, X. Gao, and Y. Xiong, “Enhancing Code Generation Through Retrieval of Cross-Lingual Semantic Graphs,” in 2024 31st Asia-Pacific Software Engineering Conference (APSEC), IEEE, 2024, pp. 151–160. doi: 10.1109/APSEC65559.2024.00026.

[73] M. Shayaninasab, M. Zahoor, and Ö. N. Yalçin, “Enhancing Patient Intake Process in Mental Health Consultations Using RAG-Driven Chatbot,” in 2024 12th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), IEEE, 2024, pp. 256–264. doi: 10.1109/ACIIW63320.2024.00053.

[74] D. Hamzic, M. Wurzenberger, F. Skopik, M. Landauer, and A. Rauber, “Evaluation and Comparison of Open-Source LLMs Using Natural Language Generation Quality Metrics,” in 2024 IEEE International Conference on Big Data (BigData), IEEE, 2024, pp. 5342–5351. doi: 10.1109/BigData62323.2024.10825576.

[75] M. V. Nezafat and S. Samet, “Fake News Detection with Retrieval Augmented Generative Artificial Intelligence,” in 2024 2nd International Conference on Foundation and Large Language Models (FLLM), IEEE, 2024, pp. 160–167. doi: 10.1109/FLLM63129.2024.10852474.

[76] H. Zeng, Z. Yue, Q. Jiang, and D. Wang, “Federated Recommendation via Hybrid Retrieval Augmented Generation,” in 2024 IEEE International Conference on Big Data (BigData), IEEE, 2024, pp. 8078–8087. doi: 10.1109/BigData62323.2024.10825302.

[77] S. Neupane et al., “From Questions to Insightful Answers: Building an Informed Chatbot for University Resources,” in 2024 IEEE Frontiers in Education Conference (FIE), IEEE, 2024, pp. 1–9. doi: 10.1109/FIE61694.2024.10892994.

[78] B. H. Rappazzo, Y. Wang, A. Ferber, and C. Gomes, “GEM-RAG: Graphical Eigen Memories for Retrieval Augmented Generation,” in 2024 International Conference on Machine Learning and Applications (ICMLA), IEEE, 2024, pp. 1259–1264. doi: 10.1109/ICMLA61862.2024.00196.

[79] Y. Xia, Z. Xiao, N. Jazdi, and M. Weyrich, “Generation of Asset Administration Shell With Large Language Model Agents: Toward Semantic Interoperability in Digital Twins in the Context of Industry 4.0,” IEEE Access, vol. 12, pp. 84863–84877, 2024, doi: 10.1109/ACCESS.2024.3415470.

[80] R. Zhang et al., “Generative AI Agents With Large Language Model for Satellite Networks via a Mixture of Experts Transmission,” IEEE J. Sel. Areas Commun., vol. 42, no. 12, pp. 3581–3596, 2024, doi: 10.1109/JSAC.2024.3459037.

[81] L.-B. Hernandez-Salinas et al., “IDAS: Intelligent Driving Assistance System Using RAG,” IEEE Open J. Veh. Technol., vol. 5, pp. 1139–1165, 2024, doi: 10.1109/OJVT.2024.3447449.

[82] A. Abdulnazar, R. Roller, S. Schulz, and M. Kreuzthaler, “Large Language Models for Clinical Text Cleansing Enhance Medical Concept Normalization,” IEEE Access, vol. 12, pp. 147981–147990, 2024, doi: 10.1109/ACCESS.2024.3472500.

[83] W. Zhang et al., “Leveraging RAG-Enhanced Large Language Model for Semi-Supervised Log Anomaly Detection,” in 2024 IEEE 35th International Symposium on Software Reliability Engineering (ISSRE), IEEE, 2024, pp. 168–179. doi: 10.1109/ISSRE62328.2024.00026.

[84] A. Rachha and M. Seyam, “LLM-Enhanced Learning Environments for CS: Exploring Data Structures and Algorithms with Gurukul,” in 2024 IEEE Frontiers in Education Conference (FIE), IEEE, 2024, pp. 1–9. doi: 10.1109/FIE61694.2024.10893211.

[85] S. Irtiza, K. A. Akbar, A. Yasmeen, L. Khan, O. Daescu, and B. Thuraisingham, “LLM-Sentry: A Model-Agnostic Human-in-the-Loop Framework for Securing Large Language Models,” in 2024 IEEE 6th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), IEEE, 2024, pp. 245–254. doi: 10.1109/TPS-ISA62245.2024.00036.

[86] D. Liao et al., “A3-CodGen: A Repository-Level Code Generation Framework for Code Reuse With Local-Aware, Global-Aware, and Third-Party-Library-Aware,” IEEE Trans. Softw. Eng., vol. 50, no. 12, pp. 3369–3384, 2024, doi: 10.1109/TSE.2024.3486195.

[87] G. Wang et al., “MeTMaP: Metamorphic Testing for Detecting False Vector Matching Problems in LLM Augmented Generation,” in FORGE ’24: 2024 IEEE/ACM First International Conference on AI Foundation Models and Software Engineering, ACM, 2024, pp. 12–23. doi: 10.1145/3650105.3652297.

[88] C. Zhang et al., “MM-Narrator: Narrating Long-form Videos with Multimodal In-Context Learning,” in 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2024, pp. 13647–13657. doi: 10.1109/CVPR52733.2024.01295.

[89] T. Sun, A. Somalwar, and H. Chan, “Multimodal Retrieval Augmented Generation Evaluation Benchmark,” in 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), IEEE, 2024, pp. 1–5. doi: 10.1109/VTC2024-Spring62846.2024.10683437.

[90] S. Kukreja, T. Kumar, V. Bharate, A. Purohit, A. Dasgupta, and D. Guha, “Performance Evaluation of Vector Embeddings with Retrieval-Augmented Generation,” in 2024 9th International Conference on Computer and Communication Systems (ICCCS), IEEE, 2024, pp. 333–340. doi: 10.1109/ICCCS61882.2024.10603291.

[91] L. Garza, L. Elluri, A. Piplai, A. Kotal, D. Gupta, and A. Joshi, “PrivComp-KG: Leveraging KG and LLM for Compliance Verification,” in 2024 IEEE 6th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), IEEE, 2024, pp. 97–106. doi: 10.1109/TPS-ISA62245.2024.00021.

[92] B. Saha, U. Saha, and M. Z. Malik, “Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance,” IEEE Access, p. 1, 2024, doi: 10.1109/ACCESS.2024.3513155.

[93] B. Başaran, “Rethinking AI in Education: A Comparative Study of Custom and External Systems,” in 2024 6th International Workshop on Artificial Intelligence and Education (WAIE), IEEE, 2024, pp. 16–28. doi: 10.1109/WAIE63876.2024.00011.

[94] D. Horita, N. Inoue, K. Kikuchi, K. Yamaguchi, and K. Aizawa, “Retrieval-Augmented Layout Transformer for Content-Aware Layout Generation,” in 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2024, pp. 67–76. doi: 10.1109/CVPR52733.2024.00015.

[95] W. Sun, H. Li, M. Yan, Y. Lei, and H. Zhang, “Revisiting and Improving Retrieval-Augmented Deep Assertion Generation,” in 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE, 2023, pp. 1123–1135. doi: 10.1109/ASE56229.2023.00090.

[96] A. Tommasel and I. Assent, “Semantic grounding of LLMs using knowledge graphs for query reformulation in medical information retrieval,” in 2024 IEEE International Conference on Big Data (BigData), IEEE, 2024, pp. 4048–4057. doi: 10.1109/BigData62323.2024.10826117.

[97] H. Qiu et al., “SteLLA: A Structured Grading System Using LLMs with RAG,” in 2024 IEEE International Conference on Big Data (BigData), IEEE, 2024, pp. 8154–8163. doi: 10.1109/BigData62323.2024.10825385.

[98] J. Pasaribu, N. Yudistira, and W. F. Mahmudy, “Tabular Data Classification and Regression : XGBoost or Deep Learning with Retrieval-Augmented Generation,” IEEE Access, p. 1, 2024, doi: 10.1109/ACCESS.2024.3518205.

[99] J. Yang, X. Wang, Q. Ni, Y. Liu, J. Wang, and F.-Y. Wang, “Towards Intelligent and Trustworthy Crowdsourcing Systems with Cyber-physical Social Intelligence via Retrieval-augmented Generation,” in 2024 International Conference on Cyber-Physical Social Intelligence (ICCSI), IEEE, 2024, pp. 1–6. doi: 10.1109/ICCSI62669.2024.10799393.

[100] Y. Tevissen, K. Guetari, and F. Petitpont, “Towards Retrieval Augmented Generation over Large Video Libraries,” in 2024 16th International Conference on Human System Interaction (HSI), IEEE, 2024, pp. 1–4. doi: 10.1109/HSI61632.2024.10613524.

[101] Tamanna, S. Rana, and P. Choudhary, “Navigating the Roadblocks: Lessons Learned from a Gardening Society Conversational RAG Bot,” in 2024 IEEE 3rd World Conference on Applied Intelligence and Computing (AIC), 2024, pp. 618–626. doi: 10.1109/AIC61668.2024.10731053.

[102] V. Patel, P. Tejani, J. Parekh, K. Huang, and X. Tan, “Developing A Chatbot: A Hybrid Approach Using Deep Learning and RAG,” Proc. - 2024 IEEE/WIC Int. Conf. Web Intell. Intell. Agent Technol. WI-IAT 2024, pp. 273–280, 2024, doi: 10.1109/WI-IAT62293.2024.00043.

Downloads

Published

2025-12-18

How to Cite

[1]
“A Systematic Literature Review of Retrieval-Augmented Generation: Methods, Applications, and Future Research Directions”, J. Appl. Comput. Sci. Technol., vol. 6, no. 2, pp. 115 – 128 , Dec. 2025, doi: 10.52158/jacost.v6i2.1170.