Analisis Penerapan Mutual Information pada Klasifikasi Status Studi Mahasiswa Menggunakan Naïve Bayes

  • Sulfayanti Situju Universitas Sulawesi Barat
  • Nahya Nur Universitas Sulawesi Barat
  • Nursan Halal
DOI: https://doi.org/10.52158/jacost.v6i1.1106
I will put the dimension here
Keywords: Naïve Bayes, Principal Componet Analysis, Reduksi Dimensi, Status Studi Mahasiswa

Abstract

Early identification of Student Study Status is essential for higher education institutions to implement proactive and strategic measures that facilitate timely completion of studies and mitigate dropout rates. This research intends to predict student study status with the Naïve Bayes method based on the features obtained from the implementation of Mutual Information. Feature selection through Mutual Information seeks to analyse the factors that most significantly impact the classification of student study status. The study status is categorized into three classes: dropout, enrolled, and graduate, based on 36 factors. The Mutual Information approach is employed to diminish data dimensions by discarding less relevant features while preserving critical information based on score values to achieve enhanced predictive accuracy. The selection of appropriate attributes enables the model to maintain simplicity while incorporating critical information aspects that significantly impact performance. Experiments were performed on a dataset comprising student academic variables, with data partitioning ratios of 80:20, 70:30, and 50:50 for training and testing datasets. The classification outcomes utilizing Naïve Bayes, without the use of Mutual Information across the three testing ratios, exhibited the accuracy of 68.29% in the 70:30 data split. Simultaneously, the classification outcomes utilizing Mutual Information across three test ratios are as follows: 71.64% accuracy at an 80:20 ratio with 10 selected attributes, 72.06% at a 70:30 ratio with 10 selected attributes, and the highest accuracy of 72.65% at a 50:50 ratio using 15 attributes. The utilization of the Naïve Bayes method for classifying student study status demonstrates enhanced accuracy when integrated with Mutual Information for feature selection. The findings of this study demonstrate that Mutual Information can streamline data by considering the quantity of attribute selections according to the ranking of their score values.

Downloads

Download data is not yet available.

References

M. R. Haditama, “Analisis Dan Pembuatan Dashboard Prediksi Kelulusan Mahasiswa Menggunakan Metode Random Forest, Naïve Bayes Dan Support Vector Machine,” Universitas Negeri Syrarif Hidayatullah Jakarta, 2023. [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/76251

V. Realinho, J. Machado, L. Baptista, and M. V. Martins, “Predicting Student Dropout and Academic Success,” Data, vol. 7, no. 11, p. 146, 2022, doi: 10.3390/data7110146.

S. Royan, A. Yulian, and S. Syaechurodji, “Implementasi Data Mining Menggunakan Metode Naive Bayes Dengan Feature Selection Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu,” SAINTEK J. Sains dan Teknol., vol. 5, no. 2, pp. 50–61, 2021, doi: 10.47080/saintek.v6i1.1467.

L. Y. L. Gaol, M. Safii, and D. Suhendro, “Prediksi Kelulusan Mahasiswa Stikom Tunas Bangsa Prodi Sistem Informasi Dengan Menggunakan Algoritma C4.5,” BRAHMANA J. Penerapan Kecerdasan Buatan, vol. 2, no. 2, pp. 97–106, 2021, [Online]. Available: https://tunasbangsa.ac.id/pkm/index.php/brahmana/article/view/71/71

S. Nuralia, H. Harliana, and T. Prabowo, “Implementasi Naïve Bayes Classifier Dalam Memprediksi Kelulusan Mahasiswa,” JACIS J. Autom. Comput. Inf. Syst., vol. 3, no. 1, pp. 63–72, 2023, doi: 10.47134/jacis.v3i1.57.

W. Jia, M. Sun, J. Lian, and S. Hou, “Feature dimensionality reduction: a review,” Complex Intell. Syst., vol. 8, no. 3, pp. 2663–2693, 2022, doi: 10.1007/s40747-021-00637-x.

V. N. Wijayaningrum, I. K. Putri, A. P. Kirana, M. R. Mubarok, D. M. Harahap, and B. R. Hamesha, “Analisis Performa Seleksi Atribut untuk Menentukan Potensi Mahasiswa Putus Studi,” JIP (Jurnal Inform. Polinema), vol. 9, no. 2, pp. 237–244, 2023, doi: 10.33795/jip.v9i2.1300.

X. Cheng, “A Comprehensive Study of Feature Selection Techniques in Machine Learning Models,” vol. 1, pp. 1–14, 2024.

S. A. Karunia, R. Saptono, and R. Anggrainingsih, “Online News Classification Using Naive Bayes Classifier with Mutual Information for Feature Selection,” J. Ilm. Teknol. dan Inf., vol. 6, no. 1, pp. 11–15, 2017.

P. B. Rohadi, “Optimasi Metode Naïve Bayes Menggunakan Seleksi Fitur Mutual Information Untuk Klasifikasi Teks Ujaran Kebencian,” Universitas Pembangunan Nasional “Veteran” Yogyakarta, 2023. [Online]. Available: http://eprints.upnyk.ac.id/36995/3/COVER.pdf%0Ahttp://eprints.upnyk.ac.id/36995/2/SKRIPSI FULL_PUTRA BAGASPATI ROHADI.pdf

R. Rachman and R. N. Handayani, “Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM,” J. Inform., vol. 8, no. 2, pp. 111–122, 2021, doi: 10.31294/ji.v8i2.10494.

A. F. Watratan, A. Puspita, and D. Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” J. Appl. Comput. Sci. Technol., vol. 1, no. 1, pp. 7–14, 2020, doi: 10.55606/jurritek.v1i1.127.

A. Pebdika, R. Herdiana, and D. Solihudin, “Klasifikasi Menggunakan Metode Naive Bayes Untuk Menentukan Calon Penerima PIP,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 452–458, 2023, doi: 10.36040/jati.v7i1.6303.

F. Handayani, D. Feddy, and S. Pribadi, “Implementasi Algoritma Naive Bayes Classifier dalam Pengklasifikasian Teks Otomatis Pengaduan dan Pelaporan Masyarakat melalui Layanan Call Center 110,” J. Tek. Elektro, vol. 7, no. 1, pp. 19–24, 2015, [Online]. Available: https://journal.unnes.ac.id/nju/jte/article/view/8585

Hartatik, K. Kusrini, and A. Budi Prasetio, “Prediction of Student Graduation with Naive Bayes Algorithm,” in 2020 Fifth International Conference on Informatics and Computing (ICIC), 2020, pp. 1–5. doi: 10.1109/ICIC50835.2020.9288625.

Syarli and A. A. Muin, “Metode Naive Bayes Untuk Prediksi Kelulusan,” J. Ilm. Ilmu Komput., vol. 2, no. 1, pp. 22–26, 2020, [Online]. Available: https://media.neliti.com/media/publications/283828-metode-naive-bayes-untuk-prediksi-kelulu-139fcfea.pdf

A. Meiriza, E. Lestari, P. Putra, A. Monaputri, and D. A. Lestari, “Prediction Graduate Student Use Naive Bayes Classifier,” in Proceedings of The Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019), Atlantis Press SARL, 2020, pp. 370–375. doi: 10.2991/aisr.k.200424.056.

Published
2025-06-22
How to Cite
[1]
S. Situju, N. Nur, and N. Halal, “Analisis Penerapan Mutual Information pada Klasifikasi Status Studi Mahasiswa Menggunakan Naïve Bayes”, J. Appl. Comput. Sci. Technol., vol. 6, no. 1, pp. 23 - 28, Jun. 2025.
Bookmark and Share