Klasifikasi Kualitas Biji Kedelai Menggunakan Transfer Learning Convolutional Neural Network Dan SMOTE

  • Amanda Prawita Ningrum Universitas Dian Nuswantoro
  • Sri Winarno Universitas Dian Nuswantoro
  • Vincentius Praskatama Universitas Dian Nuswantoro
DOI: https://doi.org/10.52158/jacost.v5i2.1002
I will put the dimension here
Keywords: Soybean Seed, CNN, Mobile Net, SMOTE, Transfer Learning

Abstract

Soybeans are an important commodity in the food and feed industry, where they can be used to produce soy milk or other processed products. However, low-quality seeds can reduce the quality of the processed products and increase production costs. To address this issue, a soybean seed quality classification system was developed using the method of Transfer Learning with CNN and SMOTE. This method leverages the ability of neural networks for extracting of the visual features and handle for data imbalance between classes. The study shows that the CNN model achieved value accuracy is 91.09%, while the combination of CNN and SMOTE get the accuracyf 89.92%. Additionally, the MobileNetV2 model reached an accuracy of 91.11%, which further improved to 92.42% after applying SMOTE. These results demonstrate that the use of Transfer Learning and SMOTE significantly enhances accuracy in soybean seed quality classification, resulting in a more effective.

Downloads

Download data is not yet available.

References

P. Qin, T. Wang, and Y. Luo, “A review on plant-based proteins from soybean: Health benefits and soy product development,” J Agric Food Res, vol. 7, Mar. 2022, doi: 10.1016/j.jafr.2021.100265.

I. S. Kim, C. H. Kim, and W. S. Yang, “Physiologically active molecules and functional properties of soybeans in human health—a current perspective,” Apr. 02, 2021, MDPI. doi: 10.3390/ijms22084054.

J. O. Karlsson, A. Parodi, H. H. E. van Zanten, P. A. Hansson, and E. Röös, “Halting European Union soybean feed imports favours ruminants over pigs and poultry,” Nat Food, vol. 2, no. 1, pp. 38–46, Jan. 2021, doi: 10.1038/s43016-020-00203-7.

W. Kudełka, M. Kowalska, and M. Popis, “Quality of soybean products in terms of essential amino acids composition,” Molecules, vol. 26, no. 16, Aug. 2021, doi: 10.3390/molecules26165071.

W. William, B. Dahl, and D. Hertsgaard, “Soybean quality differentials, blending, testing and spatial arbitrage,” Journal of Commodity Markets, vol. 18, Jun. 2020, doi: 10.1016/j.jcomm.2019.100095.

K. Karges, S. D. Bellingrath-Kimura, C. A. Watson, F. L. Stoddard, M. Halwani, and M. Reckling, “Agro-economic prospects for expanding soybean production beyond its current northerly limit in Europe,” European Journal of Agronomy, vol. 133, Feb. 2022, doi: 10.1016/j.eja.2021.126415.

F. A. Asodina, F. Adams, F. Nimoh, E. A. Weyori, C. A. Wongnaa, and J. E. A. Bakang, “Are non-market benefits of soybean production significant? An extended economic analysis of smallholder soybean farming in Upper West region of northern Ghana,” Agric Food Secur, vol. 9, no. 1, Dec. 2020, doi: 10.1186/s40066-020-00265-7.

Z. Huang et al., “Evaluating the effect of different processing methods on fermented soybean whey-based tofu quality, nutrition, and flavour,” LWT, vol. 158, Mar. 2022, doi: 10.1016/j.lwt.2022.113139.

M. Lihoussou and S. Limbourg, “Towards a sustainable production of maize and soybean in the department of Borgou,” Cleaner Logistics and Supply Chain, vol. 4, Jul. 2022, doi: 10.1016/j.clscn.2022.100039.

L. Chen, S. Li, Q. Bai, J. Yang, S. Jiang, and Y. Miao, “Review of image classification algorithms based on convolutional neural networks,” Nov. 01, 2021, MDPI. doi: 10.3390/rs13224712.

D. Bhatt et al., “Cnn variants for computer vision: History, architecture, application, challenges and future scope,” Oct. 01, 2021, MDPI. doi: 10.3390/electronics10202470.

N. Sharma, R. Sharma, and N. Jindal, “Machine Learning and Deep Learning Applications-A Vision,” Global Transitions Proceedings, vol. 2, no. 1, pp. 24–28, Jun. 2021, doi: 10.1016/j.gltp.2021.01.004.

M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Mar. 01, 2023, MDPI. doi: 10.3390/computation11030052.

A. Zafar et al., “A Comparison of Pooling Methods for Convolutional Neural Networks,” Sep. 01, 2022, MDPI. doi: 10.3390/app12178643.

X. Zhang et al., “Understanding the learning mechanism of convolutional neural networks in spectral analysis,” Anal Chim Acta, vol. 1119, pp. 41–51, Jul. 2020, doi: 10.1016/j.aca.2020.03.055.

S. H. S. Basha, S. R. Dubey, V. Pulabaigari, and S. Mukherjee, “Impact of fully connected layers on performance of convolutional neural networks for image classification,” Neurocomputing, vol. 378, pp. 112–119, Feb. 2020, doi: 10.1016/j.neucom.2019.10.008.

M. Bansal, M. Kumar, M. Sachdeva, and A. Mittal, “Transfer learning for image classification using VGG19: Caltech-101 image data set,” J Ambient Intell Humaniz Comput, vol. 14, no. 4, pp. 3609–3620, Apr. 2023, doi: 10.1007/s12652-021-03488-z.

R. A. Prasojo et al., “Precise transformer fault diagnosis via random forest model enhanced by synthetic minority over-sampling technique,” Electric Power Systems Research, vol. 220, Jul. 2023, doi: 10.1016/j.epsr.2023.109361.

R. Indraswari, R. Rokhana, and W. Herulambang, “Melanoma image classification based on MobileNetV2 network,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 198–207. doi: 10.1016/j.procs.2021.12.132.

H. Pratap, M. S. G. Prasad, P. Agarwal, A. Bhardwaj, A. Mehra, and S. Mathpati, “SoyNet: Deep Learning Approaches for Automated Soybean Seed Quality Assessment,” in 2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT), Gharuan: IEEE, Jun. 2024, pp. 613–617. doi: 10.1109/InCACCT61598.2024.10551180.

E. Erlin, Y. Desnelita, N. Nasution, L. Suryati, and F. Zoromi, “Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 3, pp. 677–690, Jul. 2022, doi: 10.30812/matrik.v21i3.1726.

M. Toyib, T. Decky, and K. Pratama, “Ilmu pengetahuan Alam,” Kebumian dan Angkasa, vol. 2, no. 3, pp. 108–120, 2024, doi: 10.62383/algoritma.v2i3.69.

Y. Tian, “Artificial Intelligence Image Recognition Method Based on Convolutional Neural Network Algorithm,” IEEE Access, vol. 8, pp. 125731–125744, 2020, doi: 10.1109/ACCESS.2020.3006097.

L. Alzubaidi et al., “Towards a better understanding of transfer learning for medical imaging: A case study,” Applied Sciences (Switzerland), vol. 10, no. 13, Jul. 2020, doi: 10.3390/app10134523.

Y. Gulzar, “Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique,” Sustainability (Switzerland), vol. 15, no. 3, Feb. 2023, doi: 10.3390/su15031906.

D. Elreedy, A. F. Atiya, and F. Kamalov, “A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning,” Mach Learn, vol. 113, no. 7, pp. 4903–4923, Jul. 2024, doi: 10.1007/s10994-022-06296-4.

A. Syahril et al., “Perbandingan Metode Decision Tree Dan K-Nearest Neighbor Terhadap Ulasan Pengguna Aplikasi Mypertamina Menggunakan Confusion Matrix,” Journal of Information System Research (JOSH), vol. 5, no. 4, pp. 1085–1094, 2024, doi: 10.47065/josh.v5i4.5639.

Published
2024-12-31
How to Cite
[1]
Amanda Prawita Ningrum, Sri Winarno, and Vincentius Praskatama, “Klasifikasi Kualitas Biji Kedelai Menggunakan Transfer Learning Convolutional Neural Network Dan SMOTE”, J. Appl. Comput. Sci. Technol., vol. 5, no. 2, pp. 155 - 164, Dec. 2024.
Bookmark and Share