Koordinasi Rele Arus Lebih di Perusahaan Nikel Indonesia Menggunakan Grasshopper Optimization Algorithm
DOI:
https://doi.org/10.52158/kn1tk933Keywords:
sistem proteksi, rele arus lebih, time dial setting, grasshopper optimization algorithm, coordination time intervalAbstract
Setiap sistem kelistrikan bergantung pada ketersediaan energi yang berkelanjutan untuk menjaga produktivitas industri tetap berjalan. Gangguan listrik akan merusak peralatan listrik. Sistem proteksi berfungsi untuk meminimalkan hingga menghilangkan gangguan secara cepat, selektif, dan terkoordinasi demi meminimalkan kerusakan sistem dan memastikan pasokan listrik yang tidak terputus. Khususnya untuk rele arus lebih, time dial setting (TDS) merupakan aspek penting yang harus dipertimbangkan perihal koordinasi proteksi. TDS mengatur waktu operasi rele untuk mengamankan sistem kelistrikan. Umumnya, perhitungan manual digunakan untuk menentukan nilai TDS. Metode trial and error sering digunakan untuk mengoordinasikan rele satu sama lain. Metode ini telah berkembang menjadi algoritma cerdas yang dapat menemukan solusi secara efektif dan cepat, salah satu algoritmanya adalah grasshopper optimization algorithm (GOA). Hasil dari simulasi pada penelitian ini didapatkan nilai koordinasi antara rele 4 bekerja pada 0,1 detik & rele 3 bekerja pada 0,3 detik saat timbul gangguan pada trafo 2, rele 3 bekerja pada 0,297 detik & rele 2 bekerja pada 0,496 detik saat timbul arus gangguan pada bus 4, rele 2 bekerja pada 0,492 detik & rele 1 bekerja pada 0,493 saat timbul arus gangguan pada bus 3 serta kinerja rele 1 yang hanya sebagai primer untuk mengamankan generator bekerja pada 0,354 detik saat timbul arus gangguan pada bus 2 telah menghasilkan nilai perhitungan TDS yang akurat serta masih mematuhi aturan pengaturan minimum nilai coordination time interval (CTI) antara rele primer dan rele backup yaitu 0,2 detik dalam satu rating tegangan dan mendekati 0 di rating tegangan yang berbeda.
References
[2] M. H. Hussain, S. R. A. Rahim, and I. Musirin, “Optimal overcurrent relay coordination: A review,” in Procedia Engineering, Elsevier Ltd, 2013, pp. 332–336. doi: 10.1016/j.proeng.2013.02.043.
[3] C. R. Chen, C. H. Lee, and C. J. Chang, “Optimal overcurrent relay coordination in power distribution system using a new approach,” International Journal of Electrical Power and Energy Systems, vol. 45, no. 1, pp. 217–222, Feb. 2013, doi: 10.1016/j.ijepes.2012.08.057.
[4] M. Pujiantara et al., “Perhitungan TDS Overcurrent Relay Menggunakan Adaptive Modified Firefly Algorithm”.
[5] N. Rezaei, M. N. Uddin, I. K. Amin, M. L. Othman, and M. Marsadek, “Genetic Algorithm-Based Optimization of Overcurrent Relay Coordination for Improved Protection of DFIG Operated Wind Farms,” in IEEE Transactions on Industry Applications, Institute of Electrical and Electronics Engineers Inc., Nov. 2019, pp. 5727–5736. doi: 10.1109/TIA.2019.2939244.
[6] S. N. Langazane and A. K. Saha, “Effects of Particle Swarm Optimization and Genetic Algorithm Control Parameters on Overcurrent Relay Selectivity and Speed,” IEEE Access, vol. 10, pp. 4550–4567, 2022, doi: 10.1109/ACCESS.2022.3140679.
[7] A. Tjahjono et al., “Adaptive modified firefly algorithm for optimal coordination of overcurrent relays,” IET Generation, Transmission and Distribution, vol. 11, no. 10, pp. 2575–2585, Jul. 2017, doi: 10.1049/iet-gtd.2016.1563.
[8] A. Korashi, S. Kamei, A. R. Youssef, and F. Jurado, “Solving Optimal Coordination of Direction Overcurrent Relays Problem Using Grey Wolf Optimization (GWO) Algorithm,” Twentieth International Middle East Power Systems Conference (MEPCON), Cairo University, Egypt, 2018.
[9] S. Saremi, S. Mirjalili, and A. Lewis, “Grasshopper Optimisation Algorithm: Theory and application,” Advances in Engineering Software, vol. 105, pp. 30–47, Mar. 2017, doi: 10.1016/j.advengsoft.2017.01.004.
[10] N. Belbachir, M. Zellagui, S. Settoul, and C. Z. El-Bayeh, “Multi-Objective Optimal Renewable Distributed Generator Integration in Distribution Systems Using Grasshopper optimization Algorithm Considering Overcurrent Relay Indices,” in Proceedings of 2021 9th International Conference on Modern Power Systems, MPS 2021, Institute of Electrical and Electronics Engineers Inc., Jun. 2021. doi: 10.1109/MPS52805.2021.9492567.
[11] F. Abidin, M. Pujiantara, and D. F. U. Putra, “Optimasi Total Operating Time Relay Arus Lebih dengan Pertimbangan Konfigurasi Mesh, Open-Mesh, dan Radial Menggunakan Firefly Algorithm,” Jurnal Teknik ITS, vol. 9, no. 2, pp. B53–B58, 2020.
[12] C. S. Mardegan and R. Rifaat, “Considerations in Applying IEEE Recommended Practice for Protection Coordination in Industrial and Commercial Power Systems-Part i,” IEEE Trans Ind Appl, vol. 52, no. 5, pp. 3705–3713, Sep. 2016, doi: 10.1109/TIA.2016.2563405.
[13] V. R. Mahindara, D. F. C. Rodriguez, M. Pujiantara, A. Priyadi, M. H. Purnomo, and E. Muljadi, “Practical Challenges of Inverse and Definite-Time Overcurrent Protection Coordination in Modern Industrial and Commercial Power Distribution System,” IEEE Trans Ind Appl, vol. 57, no. 1, pp. 187–197, Jan. 2021, doi: 10.1109/TIA.2020.3030564.
[14] L. Abualigah and A. Diabat, “A comprehensive survey of the Grasshopper optimization algorithm: results, variants, and applications,” Neural Computing and Applications, vol. 32, no. 19. Springer Science and Business Media Deutschland GmbH, pp. 15533–15556, Oct. 01, 2020. doi: 10.1007/s00521-020-04789-8.
[15] A. Ziadeh, L. Abualigah, M. A. Elaziz, C. B. Şahin, A. A. Almazroi, and M. Omari, “Augmented grasshopper optimization algorithm by differential evolution: a power scheduling application in smart homes,” Multimed Tools Appl, vol. 80, no. 21–23, pp. 31569–31597, Sep. 2021, doi: 10.1007/s11042-021-11099-1.
[16] D. K. Lal, A. K. Barisal, and M. Tripathy, “Load Frequency Control of Multi Area Interconnected Microgrid Power System using Grasshopper Optimization Algorithm Optimized Fuzzy PID Controller,” Recent Advances on Engineering, Technology and Computational Sciences, 2018.
[17] A. Alhejji, M. Ebeed Hussein, S. Kamel, and S. Alyami, “Optimal Power Flow Solution with an Embedded Center-Node Unified Power Flow Controller Using an Adaptive Grasshopper Optimization Algorithm,” IEEE Access, vol. 8, pp. 119020–119037, 2020, doi: 10.1109/ACCESS.2020.2993762.
[18] T. A. Jumani, M. W. Mustafa, M. M. Rasid, N. H. Mirjat, Z. H. Leghari, and M. Salman Saeed, “Optimal voltage and frequency control of an islanded microgrid using grasshopper optimization algorithm,” Energies (Basel), vol. 11, no. 11, Nov. 2018, doi: 10.3390/en11113191.
[19] A. L. Bukar, C. W. Tan, L. K. Yiew, R. Ayop, and W. S. Tan, “A rule-based energy management scheme for long-term optimal capacity planning of grid-independent microgrid optimized by multi-objective grasshopper optimization algorithm,” Energy Convers Manag, vol. 221, Oct. 2020, doi: 10.1016/j.enconman.2020.113161.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Riko Satrya Fajar Jaelani Putra, Aulia Rahma Annisa, Yudi Andika, Sholahuddin Muhammad Irsyad, Rahmat Basya Shahrys Tsany

This work is licensed under a Creative Commons Attribution 4.0 International License.






