Prediction of Airflow Velocity in Wind Tunnel Test Section Based on Blade Pitch Angle
I will put the dimension here
Abstract
This study was conducted in an open-circuit subsonic wind tunnel at the Aeronautics Hangar of Bandung State Polytechnic with the aim of obtaining the airflow velocity distribution in the test section and determining the blade pitch angle configuration that produces the greatest velocity. The wind tunnel has a total length of about 6 m with an octagonal test section measuring 40 cm x 40 cm x 155 cm and 7 cm chamfers at each corner. The research method involved numerical simulation using ANSYS and 3D modeling with Solidworks. Simulations were conducted at 500 RPM with blade pitch angles of 40°, 50°, 60°, and 70°. The results showed the highest speed at 50° blade pitch angle (16 - 18 m/s), with the lowest speed at 70° blade pitch angle (9 - 13 m/s). Tests at a blade pitch angle of 50° with variations in fan rotational speed (300 RPM, 500 RPM, and 700 RPM) also showed similar speeds (16.2 m/s at 500 RPM). It was found that the 50° blade pitch angle produced significant vortex strength which was influenced by the high airflow velocity. During the test, to improve the accuracy of airflow velocity measurement, it is necessary to ensure that all parts of the wind tunnel are closed.
References
[2] J. D, J. Anderson, C. P, and Cadou, Fundamentals of Aerodynamics Seventh Edition. 2023. [Online]. Available: https://www.crcpress.com/Fundamentals-of-Picoscience/Sattler/p/book/9781466505094#googlePreviewContainer
[3] Fariduzzaman, Inovasi Teknologi Pengujian Aerodinamika dan Aeroelastika untuk Rancang Bangun Jembatan Bentang Panjang. 2022. doi: 10.55981/brin.697.
[4] H. SAFI’I, “Studi Performa Turbin Angin Sumbu Vertikal NACA 0012 Dengan Turbin Angin Darrieus-H Pada Variasi Sudut Pitch 30°,40°,45°,50°,55°,60°,” Publ. Ilm. Univ. Muhammadiyah Surakarta Fak. Tek., p. 20, 2016.
[5] W. J. Rumbiak, “Pengujian dan Analisis Performansi Model Turbin Angin Tipe Poros Silang Kapasitas Daya 10 W,” 2021.
[6] D. Rhakasywi and A. Suwandi, “Pengembangan Terowongan Angin Rangkaian Terbuka Dengan Sistem Piv ( Particle Image Velocimetry ),” 2017.
[7] H. N. Firmansyah, P. Wirardi, R. F. Naryanto, and K. Karnowo, “Simulasi 3D dan Studi Eksperimental Aliran Udara pada Variasi Geometri Menggunakan Wind Tunnel,” J. Rekayasa Mesin, vol. 18, no. 3, p. 395, 2023, doi: 10.32497/jrm.v18i3.4973.
[8] T. M. I. Hakim, “Evaluasi Perancangan Terowongan Angin LS-LST Dengan Simulasi Numerik,” Litbangyasa Teknol. Pada Pesawat Terbang, Roket, vol. 5, pp. 101–106, 2015, [Online]. Available: http://karya.brin.go.id/id/eprint/11046/%0Ahttp://karya.brin.go.id/id/eprint/11046/1/Bunga Rampai_Teuku_Pustekbang_2015.pdf
[9] A. T. Teseletso, M. Namoshe, N. Subaschandar, and S. Kutua, “Design of an Open-circuit Subsonic Wind Tunnel for Educational Purpose,” Botswana Inst. Eng. 14th Bienn. Conf., no. outubro, 2015.
[10] M. Jafar Sidiq, J. T. Mesin, and P. N. Bandung, “Simulasi numerik aliran udara di dalam terowongan angin kecepatan rendah tipe terbuka,” 2014.
[11] I. G. Rasagama, K. Handinigrun, and R. F. Muldinani, “Pengembangan Model Praktikum ‘Persamaan Bernoulli’ Untuk Pembelajaran Konsep Fluida Dinamis Mahasiswa Politeknik Negeri Bandung,” Pros. Ind. Res. Work. Natl. Semin., vol. 9, pp. 790–801, 2018.
Copyright (c) 2024 Windy Maryani Pandiangan, Sugianto, Deden Masruri
This work is licensed under a Creative Commons Attribution 4.0 International License.