Airflow Velocity Measurement Of Turbular Test Section Based On Rpm Setting Configuration In Open Circuit Subsonic Wind Tunnel
I will put the dimension here
Abstrak
Speed measurements in the test section based on the RPM setting configuration of the open-type subsonic wind tunnel with a turbular test section to obtain the properties of the airflow in the test section based on the RPM setting configuration in the open-type subsonic wind tunnel. The simulation process is carried out using software Computational Fluid Dynamics (CFD) , ANSYS Fluent. The simulation process is carried out by the method Moving Reference Frame (MRF) that the fluid phenomenon is moved to move the fan in the wind tunnel to obtain airflow properties in the turbular test section, open-type subsonic wind tunnel. In the testing process, airflow velocity measurements were carried out in the turbular test section of the open-type subsonic wind tunnel using an air velocity measuring instrument, namely anemometer and hotwire. The software Computer Aided Design (CAD), Solidworks, serves to create the geometry of the open-type subsonic wind tunnel and has a turbular test section inspired by the Didacta Italia PN21 D open-type subsonic wind tunnel. The properties that occur in the test section based on the configuration of the RPM setting in the open-type subsonic wind tunnel turbular test section are expected to achieve results to obtain the value of the velocity distribution, pressure distribution and turbulence intensity value so that it is useful and supports the operation and testing process to be carried out in an open-type subsonic wind tunnel with a turbular test section.
Referensi
[2] M. F. H. Freindsisco Xaverius, 2022. Rancang Bangun Terowongan Angin Kecepatan Rendah Tipe Terbuka Sederhana Dengan Smoke Generator Sebagai Visualisasi Aliran Udara Untuk Alat Praktikum. J. Kaji. Tek. Mesin, vol. 7, no. 2, pp. 63–72.
[3] R. Abdillah, Yopa, E. Prawatya, and R. A. Wicaksono (2021). Optimasi Desain Terowongan Angin Tipe Sirkuit Terbuka Menggunakan Metode Computer-Aided Simulation And Taguchi (CAST). vol. 2, no. 2, pp. 184–191.
[4] M. J. Sidiq, Politeknik Negeri Bandung, 2014. Simulasi Numerik Aliran Udara Internal di Terowongan Angin Loop Terbuka Kecepatan Rendah. Bandung, Indonesia.
[5] W. H. Rae and A. Pope., 1999. Low-Speed Wind Tunnel Testing. 3rd ed. London: A Wiley-Interscience publication.
[6] T. M. I. Hakim, 2015. Evaluasi Perancangan Terowongan Angin LS-LST Dengan Simulasi Numerik. Litbangyasa Teknol. Pada Pesawat Terbang, Roket, vol. 5,pp.101–106.
Available:http://karya.brin.go.id/id/eprint/11046/%0Ahttp://karya.brin.go.id/id/eprint/11046/1/BungaRampai_Teuku_Pustekbang_2015.pdf
[7] D. Rhakasywi and A. Suwandi, Universitas Pancasila, 2017. Pengembangan Terowongan Angin Rangkaian Terbuka Dengan Sistem PIV (Particle Image Velocimetry).
[8] H. N. Firmansyah, P. Wirardi, R. F. Naryanto, and K. Karnowo, 2023. Simulasi 3D dan Studi Eksperimental Aliran Udara pada Variasi Geometri Menggunakan Wind Tunnel. J. Rekayasa Mesin, vol. 18, no. 3, p. 395. Available: doi :10.32497/jrm.v18i3.4973.
[9] Anonim. Didacta Italia S.R.L, Developmentaid. Available: https://www.developmentaid.org/organizations/view/6480/didacta-italia-srl
[10] J. Niulai and N. D. Muskitta, 2022. Pengaruh Bentuk Benda Uji Terhadap Pola Aliran Angin Di Ruang Uji Wind Tunnel. LPPM Politek. Saint Paul Sorong, vol. 7, no. 1, pp. 37–46.
[11] A. Ageng Riyadi. Pembuatan dan Pengujian Terowongan Angin Kecepatan Rendah Tipe Terbuka (Open Circuit Low Speed Wind Tunnel).
[12] A. T. Teseletso, M. Namoshe, N. Subaschandar, and S. Kutua, 2015. Design of an Open-circuit Subsonic Wind Tunnel For Educational Purpose. Botswana Inst. Eng. 14th Bienn. Conf., no. outubro.
[13] M. Singh, N. Singh, and S. K. Yadav, 2013. Review of Design and Construction of An Open Circuit Low Speed Wind Tunnel. Glob. J. Res. Eng., vol. 13, no. 5, pp. 1–22.
[14] N. Paul David Rey, Amiral Aziz, Dudung Hermawan, Muhammad Fahmi, 2020. Desain Dan Rancang Bangun Alat Uji Open Circuit Wind Tunnel Tipe Subsonic. KOCENIN Ser. Konf., vol. 1, no. 1, pp. 1–11.
Available:https://www.bing.com/ck/a?!&&p=1f95cfc671a920d0JmltdHM9MTcwMzM3NjAwMCZpZ3VpZD0zNDk2OGI2Yy1kZmYwLTYzMjMtMjRlMS05OTdiZGU1YzYyNTcmaW5zaWQ9NTE4MA&ptn=3&ver=2&hsh=3&fclid=34968b6c-dff0-6323-24e1-997bde5c6257&psq=Wind+tunnel+jenis+ini+dapat+menghasilkan+kecepat
[15] N. A. P. Chory, Institut Teknologi Sepuluh Nopember, 2016. Analisa Pengaruh Variasi Sudut Y-Piece Terhadap Aliran Pada Pump Header Di Plant. vol. 4, no. August, pp. 30–59. Surabaya, Indonesia.
[16] S. E. David F. Anderson, 2001 Understanding Flight. United States of America: McGraw-Hill Companies. Available: doi: 10.1036/0071386661.
[17] D. L. Fay, 1967. BAB 2 Ansys Fluent Aliran Fluida Angew. Chemie Int. Ed. 6 (11), 951–952., pp. 4–27.
[18] M. Mulyadi, Gunadarma University. Analisis Aerodinamika Pada Sayap Pesawat Terbang Dengan Menggunakan Software Berbasis Computational Fluid Dynamics (CFD).
[19] A. T. E. Kurniawan, D. Chrismanto, and G. Rindo, 2017. Analisa Perbandingan Penggunaan Energy Saving Device ( ESD ). J. Tek. Perkapalan, vol. 05, no. 1, pp. 88–96.
[20] P. Iswandi, 2014. Motor AC Satu Phase dan Tiga Phase. Academia.Edu.
Available:https://www.academia.edu/29519039/Motor_AC_Satu_Phase_dan_Tiga_Phase
##submission.copyrightStatement##
##submission.license.cc.by4.footer##