Implementasi Neural Network dalam Mengendalikan Input dan Output pada Penyiraman dan Pemupukan Tanaman Otomatis Berbasis IoT
I will put the dimension here
Abstract
Agriculture is an important sector in human life. However, in practice, agriculture still faces many challenges such as difficulties in optimally controlling watering and fertilizing crops. To overcome this problem, an automatic plant watering and fertilizing system was developed as an alternative solution. This system can help farmers control watering and fertilizing plants automatically and optimally based on soil and plant conditions measured by sensors. In practice, automation systems for watering and fertilizing plants usually still use simple rules based on the experience or theory of farmers. Therefore, the implementation of a neural network in an automated system of watering and fertilizing plants can help predict irrigation needs for plants accurately and control watering and fertilizing automatically. To prove the effectiveness of the proposed method, testing was carried out using the Neuroph Studio application. From the test results, the total error results for the tool in controlling the output are less than 0.01 of the desired output value. These results are good and indicate that the neural network is an effective method of choice as a learning parameter. In addition, by using IoT technology, the automation system can be connected to the internet, so that it can be accessed remotely and monitored in real-time. This makes it easier for users to control the automation system and monitor the state of the plants.
References
P. Effendi, S. Muhammad, H. Rusman, and P. Y. Muhammad, Menuju Pertanian Modern Berkelanjutan. 2017.
Y. Q. O. Fauziah, C. P. Vecky, D. . M. Pinrolinvic, and F. R. Reynold, “Implementasi Internet of Things Pada Sistem Monitoring Suhu dan Kelembaban Pada Ruangan Pengering Berbasis Web,” J. Tek. Elektro dan Komput., vol. 7, no. 3, pp. 331–338, 2018, [Online]. Available: www.cec-unsrat.com.
M. Liao, S. Chen, C. Chou, H. Chen, S. Yeh, Y. Chang, and J. Jiang, On precisely relating the growth of Phalaenopsis leaves to greenhouse environmental factors by using an IoT-based monitoring system, Computers and Electronics in Agriculture, Vol. 136, pp. 125-139, 2017. https://doi.org/10.1016/j.compag.2017.03.003.
Kumar, V. Singh, S. Kumar, S. P. Jaiswal, and V. S. Bhadoria, IoT enabled system to monitor and control greenhouse, Materials Today: Proceedings, Vol. 49, No 8, pp. 3137-3141, 2022. https://doi.org/10.1016/j.matpr.2020.11.040
K. S. Uray Ristian, Ikhwan Ruslianto, “Sistem Monitoring Smart Greenhouse pada Lahan Terbatas Berbasis Internet of Things (IoT),” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 8, no. 1, pp. 87–94, 2022, [Online]. Available: https://jurnal.untan.ac.id/index.php/jepin/article/view/52770/75676592894
N. Astriana Rahma Putri, suroso, “Perancangan Alat Penyiram Tanaman Otomatis pada Miniatur Greenhouse Berbasis IOT,” Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri 2019, vol. Volume 5 n, pp. 155–159, 2019.
V. S. Windyasari and P. A. Bagindo, “Rancang Bangun Alat Penyiraman Dan Pemupukan Tanaman Secara Otomatis Dengan Sistem Monitoring Berbasis Internet Of Things,” Prosiding Seminar Nasional Universitas Indonesia Timur, vol. 1, no. 1, pp. 151–171, 2019.
D. N. K. Hardani, I. H. Kurniawan, and L. Hayat, “PELATIHAN DESAIN APLIKASI INTERNET OF THINGS (IoT) UNTUK PENINGKATAN KOMPETENSI GURU SMK MUHAMMADIYAH SOMAGEDE,” Jurnal Pengabdian Teknik dan Sains (JPTS), vol. 1, no. 1, pp. 11–17, 2021, doi: 10.30595/.v1i1.9165.
E. P. Cynthia and E. Ismanto, “Memprediksi Ketersediaan Komoditi Pangan Provinsi Riau,” J. Teknol. Dan Sist. Inf. Univrab, vol. 2, no. 2, pp. 196–209, 2018.
T. Nurmala and A. W. Irwan, Pangan Alternatif Berbasis Serealia Minor. 2007.
Chang, S. Chung, W. Fu, and C. Huang,Artificial intelligence approaches to predict growth, harvest day, and quality of lettuce (Lactuca sativa L.) in a IoT-enabled greenhouse system, Biosystems Engineering, Vol. 212, pp. 77-105, 2021. https://doi.org/10.1016/j.biosystemseng.2021.09.015.
M. Khotib and S. Sutikno, “Prototipe Sistem Kontrol Parameter Fisik ( Suhu - Kadar Air Tanah - Kelembaban Udara ) Pada Green House Untuk Budidaya Tanaman Cabai,” Jurnal Teknik Elektro dan Komputasi (ELKOM), vol. 1, no. 2, pp. 86–92, 2019, doi: 10.32528/elkom.v1i2.3087.
F. Hahn, Fuzzy controller decreases tomato cracking in greenhouses, Computers and Electronics in Agriculture, Vol. 77, No 1, pp. 21-27, 2011. https://doi.org/10.1016/j.compag.2011.03.003.
H. Benyezza, M. Bouhedda, and S. Rebouh, Zoning irrigation smart system based on fuzzy control technology and IoT for water and energy saving, Journal of Cleaner Production, Vol. 302, p. 127001, 2021. https://doi.org/10.1016/j.jclepro.2021.127001.
M. Andrianto, “Penerapan Iot Pada Perawatan Tanaman Di Dalam Rumah,” JATI (Jurnal Mhs. Tek. Inform., vol. 3, no. 1, pp. 173–180, 2019.
A. D. Novianto, I. N. Farida, and J. Sahertian, “Alat Penyiram Tanaman Otomatis Berbasis IoT Menggunakan Metode Fuzzy Logic,” Semin. Nas. Inov. Teknol., pp. 316–321, 2021.
F. Nazareta, G. Soepriyono, F. Inference, and S. Moisture, “Smart Agriculture :,” vol. 9, no. 2, pp. 839–854, 2022.
Copyright (c) 2022 Aulia Ratna Juwita, Tresna Dewi, Yurni Oktarina
This work is licensed under a Creative Commons Attribution 4.0 International License.