Neural Network Controller Sebagai Automatic Transfer Switch PV Panel Dan Baterai Pada Robot Penjaga Lahan Pertanian

  • Andika Wijaya
  • Pola Risma Politeknik Negeri Sriwijaya
  • Renny Maulidda
  • Hendra Marta Yudha
DOI: https://doi.org/10.52158/jasens.v4i1.502
I will put the dimension here

Abstract

Greenhouse adalah sebuah bagunan untuk membudidayakan tanaman didalamnya. Namun, ada masalah yang
harus dihadapi, seperti gangguan objek penganggu tanaman (OPT) sehingga greenhouse membutuhkan penjaga
yang tersedia 24 jam. Untuk menjaga keamanan dan kondisi lingkungan sekitar greenhouse solusi yang digunakan
dengan aplikasi robotika, salah satunya robot security yang fungsinya mengawasi dan menjaga lingkungan secara
terus-menerus dan memberikan informasi real-time. Kecerdasan juga ditanaman pada robot security untuk
mengoptimalkan kinerjanya. Makalah ini membahas desain sistem automatic transfer switch (ATS) pada robot
security “Maarinos” dengan menggunakan metode Neural Network . Tujuan untuk mendapatkan input kontrol
yang efektif dalam menentukan output. Untuk pegujian Neural Network dilakukan melalui simulasi menggunakan
aplikasi Neuroph Studio. Hasil dari simulasi menunjukan bahwa dengan metode Neural Network pada sistem
automatic transfer switch (ATS) menghasilkan keputusan yang efektif, dimana jika sensor LDR mendeteksi
intensitas cahaya > 850 Lux dan sensor pzem 017 mendeteksi tegangan > 10 V pada PV panel, nilai akan belogika
1 sementara jika intensitas cahaya < 850 Lux dan pzem 017 mendeteksi tegangan > 10 V nilai akan berlogika 0
dalam menentukan keputusan dan pada pendeteksian intensitas cahaya (Lux) dan tegangan (Volt) pada PV panel
dengan tegangan (Volt) pada baterai, kecepatan motor DC (RPM) bevariasi.

References

[1] M. Liao, S. Chen, C. Chou, H. Chen, S. Yeh, Y. Chang, and
J. Jiang, On precisely relating the growth of Phalaenopsis
leaves to greenhouse environmental factors by using an
IoT-based monitoring system, Computers and Electronics
in Agriculture, Vol. 136, pp. 125-139, 2017.
https://doi.org/10.1016/j.compag.2017.03.003.
[2] A. Kumar, V. Singh, S. Kumar, S. P. Jaiswal, and V. S.
Bhadoria, IoT enabled system to monitor and control
greenhouse, Materials Today: Proceedings, Vol. 49, No 8,
pp. 3137-3141, 2022.
https://doi.org/10.1016/j.matpr.2020.11.040
[3] G. Singh, P. P. Singh, P. P. Singh Lubana, and K.G. Singh,
Formulation and validation of a mathematical model of the
microclimate of a greenhouse, Renewable Energy, Vol. 31,
No 10, pp. 1541-1560, 2006.
https://doi.org/10.1016/j.renene.2005.07.011.
[4] H. Kim, D. H. Lee, S. W. Ahn, W. K. Kim, S. O. Hur, J. Y.
Choi, S. Chung, Design and testing of an autonomous
irrigation controller for precision water management of
greenhouse crops, Engineering in Agriculture,
Environment and Food, Vol. 8, No 4, pp. 228-234, 2015.
https://doi.org/10.1016/j.eaef.2015.03.001
[5] D. S. Paraforos, H. W. Griepentrog, Multivariable
greenhouse climate control using dynamic decoupling
controllers, IFAC Proceedings Volumes, Vol. 46, No 18,
pp. 305-310, 2013, https://doi.org/10.3182/20130828-2-
SF-3019.00064.
[6] C. A. Hernández-Morales, J.M. Luna-Rivera, and R. PerezJimenez, Design and deployment of a practical IoT-based
monitoring system for protected cultivations, Computer
Communications, Vol. 186, pp. 51-64, 2022.
https://doi.org/10.1016/j.comcom.2022.01.009.
[7] C. Chang, S. Chung, W. Fu, and C. Huang,Artificial
intelligence approaches to predict growth, harvest day, and
quality of lettuce (Lactuca sativa L.) in a IoT-enabled
greenhouse system, Biosystems Engineering, Vol. 212, pp.
77-105, 2021.
https://doi.org/10.1016/j.biosystemseng.2021.09.015.
[8] E. A. Abioye, M. S. Z. Abidin, M. S. A. Mahmud, S.
Buyamin, M. K. I. AbdRahman, A. O. Otuoze, M. S. A.
Ramli, and O. D. Ijike, IoT-based monitoring and datadriven modelling of drip irrigation system for mustard leaf
cultivation experiment, Information Processing in
Agriculture, Vol. 8, No 2, pp. 270-283, 2021,
https://doi.org/10.1016/j.inpa.2020.05.004
[9] E. Collado, E. Valdés, A. García, and Y. Sáez, Design and
implementation of a low-cost IoT-based agroclimatic
monitoring system for greenhouses, AIMS Electronics and
Electrical Engineering, Vol. 5, No. 4, pp. 251-283, 2021.
doi: 10.3934/electreng.2021014.
[10] F. Hahn, Fuzzy controller decreases tomato cracking in
greenhouses, Computers and Electronics in Agriculture,
Vol. 77, No 1, pp. 21-27, 2011.
https://doi.org/10.1016/j.compag.2011.03.003.
[11] H. Benyezza, M. Bouhedda, and S. Rebouh, Zoning
irrigation smart system based on fuzzy control technology
and IoT for water and energy saving, Journal of Cleaner
Production, Vol. 302, p. 127001, 2021.
https://doi.org/10.1016/j.jclepro.2021.127001.
[12] Dewi T., Nurmaini S., Risma P., Oktarina Y., and Roriz M.,
2019, Inverse Kinematic Analysis of 4 DOF Pick and Place
Arm Robot Manipulator using Fuzzy Logic Controller,
IJECE, 10(2), pp. 1376-1386.
doi:10.11591/ijece.v10i2.pp1376-1386.
[13] Uchiyama N., Dewi T., and Sano S., 2014, Collision
Avoidance Control for a Human-Operated Four Wheeled
Mobile Robot, Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering
Science, 228(13), pp. 2278-2284.
https://doi.org/10.1177/0954406213518523.
[14] Dewi T., Amperawan, Risma P., Oktarina Y., and Yudha
D. A., 2020, Finger Cue for Mobile Robot Motion Control,
Computer Engineering and Application Journal, 9(1), pp.
39-48. doi: 10.18495/COMENGAPP.V9I1.319.
[15] Oktarina Y., Dewi T., and Risma T., 2020, The Concept of
Automatic Transport System Utilizing Weight Sensor, Vol.
9, No. 2, pp. 155-163.
doi:10.18495/COMENGAPP.V0I0.339
[16] Farooq U., Amar M., Asad M.U., Hanif A., and Saleh S.O.,
2014. Design and Implementation of Neural Network of
Based Controller for Mobile Robot Navigation in
Unknown Environment. International Journal of Computer
and Electrical Engineering, 6(2), pp. 83-89.
doi:10.7763/IJCEE.2014.V6.799
[17] Uchiyama N., Dewi T., Sano S., and Takahashi H., 2014,
Swarm Robot Control for Human Services and Moving
Rehabilitation by Sensor Fusion, Journal of Robotics,
2014(278659), 11 pages.
https://doi.org/10.1155/2014/278659.
[18] Al Yahmedi A.S., and Fatmi M.A., 2016. Fuzzy Logic
Based Navigation of Mobile Robots,” Intech, 6, pp. 111-
133.
[19] Nurmaini S., Tutuko B., Dewi K., Yuliza V., and Dewi T.,
2017, Improving Posture Accuracy of Non-holonomic
Mobile Robot system with Variable Universe of Discourse,
TELKOMNIKA, 15(3). Pp. 1265-1279. doi:
10.12928/TELKOMNIKA.v15i3.6078.
[20] Dewi T., Wijanarko Y., Risma P., and Oktarina Y., 2018,
Fuzzy Logic Controller Design for Leader-Follower Robot
Navigation, 5
th Proc. EECSI, 5(1), pp. 298-303. 16-18 Oct
2018, Malang : Indonesia.
doi:10.1109/EECSI.2018.8752696.
[21] Dewi T., Risma P., and Oktarina Y., 2018, Fuzzy Logic
Simulation as a Teaching-learning Media for Artificial
Intelligence Class, Journal of Automation Mobile Robotics
and Intelligent Systems, 12(3), pp. 3-9.doi:
10.14313/JAMRIS_3-2018/13
[22] Dewi T., Oktarina Y., Risma P., and Kartini S., 2019,
Desain Robot Pengikut Manusia Sederhana dengan Fuzzy
Logic Controller, Proc. Annual Research Seminar (ARS),
5(1), pp. 12-16, 16 Nov 2019, Palembang: Indonesia.
[23] Oktarina Y., Septiarini F., Dewi T., Risma P., and Nawawi
M., 2019, Fuzzy-PID Controller Design of 4 DOF
Industrial Arm Robot Manipulator, Computer Engineering
and Application Journal, 8(2), pp. 123-136. doi:
10.18495/COMENGAPP.V8I2.300.
[24] Dewi T., Sitompul C., Risma P., Oktarina Y., Jelista R.,
Mulyati M., 2019, Simulation Analysis of Formation
Control Design of Leader-Follower Robot Using Fuzzy
Logic Controller, Proc 2019 ICECOS, 2-3 Oct. 2019,
Batam Island: Indonesia.
doi:10.1109/ICECOS47637.2019.8984433
[25] Yudha H. M., Dewi T., Hasana N., Risma P., Oktarina, Y.
Kartini S., 2019, Performance Comparison of Fuzzy Logic
and Neural Network Design for Mobile Robot Navigation,
Proc. 2019 ICECOS, 2-3 Oct. 2019, Batam Island:
Indonesia. doi:10.1109/ICECOS47637.2019.8984577
[26] Larasati N., Dewi T., and Oktarina Y., 2017. Object
Following Design for a Mobile Robot using Neural
Network. Computer Engineering and Application Journal,
6(1), pp. 5-14. doi:10.18495/COMENGAPP.V6I1.189.
[27] Dewi T., Risma P., Oktarina Y., and Roseno M.T., 2017.
Neural Network Design for a Mobile Robot Navigation a
Case Study. 4th Proc. EECSI. 23-24 Sep. 2017.
Yogyakarta: Indonesia.
doi:10.1109/EECSI.2017.8239168.
[28] Dewi T., Risma P., Oktarina Y., and Nawawi M., 2017.
Neural Network Simulation for Obstacle Avoidance and
Wall Follower Robot as a Helping Tool for TeachingLearning Process in Classroom. 1st Proc. ICEAT, 29-30
November 2017, Mataram: Indonesia. doi:10.1088/1757-
899X/403/1/012043
[29] Risma P., Dewi T., Oktarina Y., and Wijanarko Y., 2019.
Neural Network Controller Application on a Visual based
Object Tracking and Following Robot. Computer
Engineering and Application Journal, 8(1). doi:
10.18495/COMENGAPP.V8I1.280.
[30] Dewi T., Risma P., Taqwa A., Rusdianasari, and Renaldi
H., 2020, Experimental analysis on solar powered mobile
robot as the prototype for environmentally friendly
automated transportation, Proc. iCAST on Engineering
Science, 24-25 Oct 2019, Bali: Indonesia,
doi:10.1088/1742-6596/1450/1/012034.
[31] F. Septiarini, T. Dewi and Rusdianasari, Design of a solarpowered mobile manipulator using fuzzy logic controller of
agriculture application, International Journal of
Computational Vision and Robotics, Inderscience, Vol. 12,
No. 5, pp. 506-531, 2022.
https://doi.org/10.1504/IJCVR.2022.125356.
[32] Y. Oktarina, T. Dewi, P. Risma, and M. Nawawi, Tomato
Harvesting Arm Robot Manipulator; a Pilot Project,
Journal of Physics: Conference Series, 1500, p 012003,
Proc. 3rd FIRST, Palembang: Indonesia, 2020, DOI:
10.1088/1742-6596/1500/1/ 012003
[33] T. Dewi, P. Risma, and Y. Oktarina, Fruit Sorting Robot
based on Color and Size for an Agricultural Product
Packaging System, Bulletin of Electrical Engineering, and
Informatics (BEEI), vol. 9, no. 4, pp. 1438-1445, 2020,
DOI: 10.11591/eei.v9i4.2353.
[34] T. Dewi, Z. Mulya, P. Risma, and Y. Oktarina, BLOB
Analysis of an Automatic Vision Guided System for a Fruit
Picking and Placing Robot, International Journal of
Computational Vision and Robotics, Vol. 11, No 3, pp.
315- 326, 2021.
https://doi.org/10.1504/IJCVR.2021.115161.
[35] T. Dewi, C. Anggraini, P. Risma, Y. Oktarina, and
Muslikhin, Motion Control Analysis of Two Collaborative
Arm Robots in Fruit Packaging System, SINERGI Vol. 25,
No. 2, pp. 217-226, 2021.
http://doi.org/10.22441/sinergi.2021.2.013.
[36] P. P. Putra, T. Dewi, and Rusdianasari, MPPT
Implementation for Solar-powered Watering System
Performance Enhancement," Technology Reports of
Kansai University, Vol. 63, No. 01, pp. 6919-6931, 2021.
ISSN: 04532198.
[37] Y. Mases, T. Dewi, and Rusdianasari, Solar Radiation
Effect on Solar Powered Pump Performance of an
Automatic Sprinkler System. Paper presented at the
Proceedings of 2021 International Conference on Electrical
and Information Technology (IEIT), pp. 246-250, 2021.
[38] K. Junaedi, T. Dewi, and M. S. Yusi, "The Potential
Overview of PV System Installation at the Quarry Open Pit
Mine PT. Bukit Asam, Tbk Tanjung Enim," Kinetik: Game
Technology, Information System, Computer Network,
Computing, Electronics, and Control, Vol. 6, No. 1, pp. 41-
50, 2021. https://doi.org/10.22219/kinetik.v6i1.114.
[39] Sarwono, T. Dewi, and RD Kusumanto, "Geographical
Location Effects on PV Panel Output - Comparison
Between Highland and Lowland Installation in South
Sumatra, Indonesia," Technology Reports of Kansai
University, Vol. 63, No. 02, pp. 7229-7243, 2021. ISSN:
04532198.
[40] H. M. Yudha, T. Dewi, P. Risma, and Y. Oktarina, Life
Cycle Analysis for the Feasibility of Photovoltaic System
Application in Indonesia,âA˘ ˙I in IOP Conference Series:
Earth and Environmental Science 124 012005, 2018. DOI
:10.1088/1755-1315/124/1/012005.
[41] T. Dewi, P. Risma, and Y. Oktarina, "A Review of Factors
Affecting the Efficiency and Output of a PV system
Applied in Tropical Climate," in IOP Conference Series:
Earth and Environmental Science 258 012039 ICoSITer
2018, 2019. doi:10.1088/1755-1315/258/1/012039.
[42] H.A. Harahap, T. Dewi, and Rusdianasari, Automatic
Cooling System for Efficiency and Output Enhancement of
a PV System Application in Palembang, Indonesia, in 2nd
Forum in Research, Science, and Technology, IOP Conf.
Series: Journal of Physics: Conf. Series 1167 012027, 2019.
doi:10.1088/1742-6596/1167/1/012027.
[43] A. A. Sasmanto, T. Dewi, and Rusdianasari, Eligibility
Study on Floating Solar Panel Installation over Brackish
Water in Sungsang, South Sumatra, EMITTER
International Journal of Engineering Technology, Vol. 8,
No. 1, 2020.
[44] B. Junianto, T. Dewi, and C. R. Sitompul, Development
and Feasibility Analysis of Floating Solar Panel
Application in Palembang, South Sumatra Journal of
Physics: Conf. Series 3nd Forum in Research, Science, and
Technology Palembang, Indonesia, 2020.
Published
2024-01-05
How to Cite
Wijaya, A., Risma, P., Maulidda, R., & Yudha, H. M. (2024). Neural Network Controller Sebagai Automatic Transfer Switch PV Panel Dan Baterai Pada Robot Penjaga Lahan Pertanian. Journal of Applied Smart Electrical Network and Systems, 4(1), 1-8. https://doi.org/10.52158/jasens.v4i1.502