the Estimation of State of Charge for 4S2P Lithium-Ion Battery Using Kalman Filter and Coulomb Counting

Comparative Simulation-Based Study with Evaluation of RMSE, MAE, MAPE, and R² Metrics

  • Tiara Erly Syah Putri Politeknik Perkapalan Negeri Surabaya
  • Mat Syai’in
  • Ii Munadhif
DOI: https://doi.org/10.52158/jasens.v6i01.1166
I will put the dimension here
Keywords: kalman filter, coulomb counting, state of charge, materai management system, matlab simulation, rmse, mae, voltage referance, estimation accuracy

Abstract

State of Charge (SoC) estimation is crucial for the performance and safety of Battery Management Systems (BMS). This study evaluates and compares two SoC estimation methods—Kalman Filter and Coulomb Counting—based on numerical simulation of a 4S2P lithium-ion battery charging process using MATLAB. The methods are assessed using statistical metrics: RMSE, MAE, MAPE, and R², and are compared against both current-based reference calculations and normalized actual voltage. Kalman Filter consistently demonstrates superior performance, achieving lower RMSE (0.00067) and MAE (0.00045) against SoC reference, and RMSE (0.0376), MAE (0.0312), R² (0.978) against voltage reference. In contrast, Coulomb Counting shows increased error accumulation and lower correlation with system behavior. This confirms Kalman Filter's robustness in dynamic conditions, owing to its real-time correction mechanism and noise tolerance. The study highlights Kalman Filter as a more accurate and reliable method for modern BMS applications. Recommendations for future development include real-world testing and hybrid algorithm implementation.

References

[1] C. Mamahit, J. Ticoh, N. Sangi, and H. Angmalisang, “Studi Sistem Pengisian Cepat Baterai Kendaraan Listrik Berbasis Papan Pengendali OpenEVSE,” vol. 2, no. 1, pp. 61–70, 2022.
[2] J. Xie et al., “State of charge estimation of lithium-ion battery based on extended Kalman filter algorithm,” Front. Energy Res., vol. 11, no. May, pp. 1–15, 2023, doi: 10.3389/fenrg.2023.1180881.
[3] H. M. Fahmy, R. A. Swief, H. M. Hasanien, M. Alharbi, J. L. Maldonado, and F. Jurado, “Hybrid State of Charge Estimation of Lithium-Ion Battery Using the Coulomb Counting Method and an Adaptive Unscented Kalman Filter,” Energies, vol. 16, no. 14, 2023, doi: 10.3390/en16145558.
[4] Z. Zaini, D. M. Harfina, and A. P. Iswar, “Real-Time SoC Estimation for Li-Ion Batteries using Kalman Filter based on SBC Raspberry-Pi,” Andalas J. Electr. Electron. Eng. Technol., vol. 1, no. 2, pp. 48–57, 2021, doi: 10.25077/ajeeet.v1i2.12.
[5] M. Nizar Habibi, M. Imron Dwi Prasetyo, N. Ayub Windarko, D. Septi Yanaratri, and P. Elektronika Negeri Surabaya, “Estimasi State of Charge (SOC) Pada Baterai Lithium – Ion Menggunakan Feed-Forward Backpropagation Neural Network Dua Tingkat,” JTT (Jurnal Teknol. Terpadu), vol. 8, no. 2, pp. 82–91, 2020, [Online]. Available: https://jurnal.poltekba.ac.id/index.php/jtt/article/view/846/552%0Ahttps://jurnal.poltekba.ac.id/index.php/jtt/article/view/846/xml%0Ahttps://jurnal.poltekba.ac.id/index.php/jtt/article/view/846
[6] L. K. Amifia and M. A. Kamali, “Evaluating the Battery Management System’s Performance Under Levels of State of Health (SOH) Parameters,” J. Robot. Control, vol. 4, no. 6, pp. 808–817, 2023, doi: 10.18196/jrc.v4i6.20401.
[7] Nabila Alya Maulidina, Randy Erfa Saputra, and Casi Setianingsih, “Estimasi State of Charge Dan State of Health Pada Baterai Lithium Ion Dengan Metode Perhitungan Coulomb,” e-Proceeding Eng., vol. 8, no. 6, pp. 11987–11987, 2021.
[8] K. M. M. Bawango, H. S. Kolibu, and S. H. J. Tongkukut, “Estimasi State of Charge Pada Baterai Li-ion Dengan Menggunakan Metode Coulomb Counting Estimation of State of Charge in Li-ion Batteries Using the Coulomb Counting Method,” vol. 9, no. 2, pp. 78–84, 2024.
[9] M. R. Agsa and A. Fatoni, “Estimasi State of Charge Baterai dengan Kalman Filter untuk Energy Management System,” vol. 12, no. 2, 2023.
[10] M. Y. Baihaqi and W. Wijaya, “Penerapan Filter Kalman untuk Meningkatkan Akurasi dan Presisi Sensor Suhu LM35,” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 1, no. 1, pp. 93–101, 2021, doi: 10.24002/konstelasi.v1i1.4282.
[11] T. P. Cahyono, T. Hardianto, and B. S. Kaloko, “Pengujian karakteristik baterai lithium-ion dengan metode Fuzzy dengan beban bervariasi,” J. Arus Elektro Indones., vol. 6, no. 3, pp. 82–86, 2020.
[12] A. Maarif, R. D. Puriyanto, and F. R. T. Hasan, “Robot keseimbangan dengan kendali proporsional-integral-derivatif (PID) dan Kalman filter,” IT J. Res. Dev., vol. 4, no. 2, 2020.
Published
2025-06-30
How to Cite
Tiara Erly Syah Putri, Mat Syai’in, & Ii Munadhif. (2025). the Estimation of State of Charge for 4S2P Lithium-Ion Battery Using Kalman Filter and Coulomb Counting. Journal of Applied Smart Electrical Network and Systems, 6(01), 48-56. https://doi.org/10.52158/jasens.v6i01.1166