Transformasi Teknologi dalam Sel Surya Film Tipis Generasi Kedua
I will put the dimension here
Abstract
Efficiency and cost are important points in the development of the renewable energy industry, especially solar cells. While the first generation of crystalline silicon-based solar cells had the biggest constraint in cost, the second generation of thin-film solar cells is trying to offer innovations with relatively lower cost but high flexibility compared to the first generation. This article explores the essential developments in the invention of second-generation thin-film solar cells, including materials, performance, and technology. Through their respective fabrication processes, ultra-thin-film solar cells based on various materials such as amorphous silicon, Cadmium Telluride/Cadmium Sulfide (CdTe/CdS), and Copper Indium Gallium Selenide/Copper Zinc Tin Sulfide (CIGS/CZTS) were discovered. With these types of thin-film cells as well, the use of solar cells is more flexible for various applications mainly due to their lighter weight. Although the efficiency of their photovoltaic effect or light-to-electricity conversion is generally lower than that of crystalline silicon solar cells, these thin-film solar cells are efficient in absorbing light in dimmer conditions.
References
[1] T. D. Lee and A. U. Ebong, “A review of thin film solar cell technologies and challenges,” 2017. doi: 10.1016/j.rser.2016.12.028.
[2] C. Mebarkia, D. Dib, H. Zerfaoui, and R. Belghit, “Energy efficiency of a photovoltaic cell based thin films CZTS by SCAPS,” Journal of Fundamental and Applied Sciences, vol. 8, no. 2, 2016, doi: 10.4314/jfas.v8i2.13.
[3] J. Pastuszak and P. Węgierek, “Photovoltaic Cell Generations and Current Research Directions for Their Development,” 2022. doi: 10.3390/ma15165542.
[4] T. Zhang, M. Wang, and H. Yang, “A review of the energy performance and life-cycle assessment of building-integrated photovoltaic (BIPV) systems,” 2018. doi: 10.3390/en11113157.
[5] L. Partain, R. Hansen, S. Hansen, D. Bennett, A. Newlands, and L. Fraas, “‘Swanson’s Law’ plan to mitigate global climate change,” in Conference Record of the IEEE Photovoltaic Specialists Conference, 2016. doi: 10.1109/PVSC.2016.7750284.
[6] R. M. Swanson, “A vision for crystalline silicon photovoltaics,” 2006. doi: 10.1002/pip.709.
[7] D. Cardwell, “Solar and Wind Energy Start to Win on Price vs. Conventional Fuels,” The New York Times, pp. 2–5, 2014, [Online]. Available: http://www.nytimes.com/2014/11/24/business/energy-environment/so?onal-fuels.html?emc=edit_tnt_20141123&nlid=61001495&tntemail0=y
[8] Brucem, “Have You Heard of Swanson’s Law?,” xray-delta.com.
[9] V. Muteri et al., “Review on life cycle assessment of solar photovoltaic panels,” 2020. doi: 10.3390/en13010252.
[10] M. Abderrezek, M. Fathi, and F. Djahli, “Comparative study of temperature effect on thin film solar cells,” Journal of Nano- and Electronic Physics, vol. 10, no. 2, 2018, doi: 10.21272/jnep.10(2).02027.
[11] A. M. Adeyinka, O. V. Mbelu, Y. B. Adediji, and D. I. Yahya, “A Review of Current Trends in Thin Film Solar Cell Technologies,” International Journal of Energy and Power Engineering, vol. 17, no. 1, pp. 1–10, 2023.
[12] I. E. Tinedert, F. Pezzimenti, M. L. Megherbi, and A. Saadoune, “Design and simulation of a high efficiency CdS/CdTe solar cell,” Optik (Stuttg), vol. 208, 2020, doi: 10.1016/j.ijleo.2019.164112.
[13] G. Contento, B. Lorenzi, A. Rizzo, and D. Narducci, “Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies,” Energy, vol. 131, 2017, doi: 10.1016/j.energy.2017.05.028.
[14] C. Yan et al., “Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment,” Nat Energy, vol. 3, no. 9, 2018, doi: 10.1038/s41560-018-0206-0.
[15] A. M. Ali et al., “A computational study on the energy bandgap engineering in performance enhancement of CdTe thin film solar cells,” Results Phys, vol. 7, 2017, doi: 10.1016/j.rinp.2017.02.032.
[16] Y. Osman, M. Fedawy, M. Abaza, and M. H. Aly, “Solar cell performance enhancement with optimized CIGS absorber bandgap and buffer layer,” in Journal of Physics: Conference Series, 2020. doi: 10.1088/1742-6596/1447/1/012057.
[17] M. Zeman, “Thin-film silicon PV technology,” Journal of Electrical Engineering, vol. 61, no. 5, 2010, doi: 10.2478/v10187-010-0039-y.
[18] H. Firoozi and M. Imanieh, “Improvement performance CIGS thin film solar cells by changing the thickness Cd_S layer,” Journal of Research in Science, Engineering and Technology, vol. 6, 2018.
[19] D. Tang et al., “An alternative route towards low-cost Cu2ZnSnS4 thin film solar cells,” Surf Coat Technol, vol. 232, 2013, doi: 10.1016/j.surfcoat.2013.04.052.
[20] C. J. Cleveland, Encyclopedia of Energy. Boston, United States: Elsevier Science, 2004.
[21] M. Jiang and X. Y, “Cu2ZnSnS4 Thin Film Solar Cells: Present Status and Future Prospects,” in Solar Cells - Research and Application Perspectives, 2013. doi: 10.5772/50702.
[22] B. P. Singh, S. K. Goyal, and P. Kumar, “Solar pv cell materials and technologies: Analyzing the recent developments,” in Materials Today: Proceedings, 2021. doi: 10.1016/j.matpr.2021.01.003.
[23] K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: An overview,” Progress in Photovoltaics: Research and Applications, vol. 12, no. 2–3, 2004, doi: 10.1002/pip.541.
[24] H. Kang, “Crystalline Silicon vs. Amorphous Silicon: The Significance of Structural Differences in Photovoltaic Applications,” in IOP Conference Series: Earth and Environmental Science, 2021. doi: 10.1088/1755-1315/726/1/012001.
[25] I. Usman, D. Ismail, H. Sutanto, and T. Winata, “Penumbuhan lapisan tipis silikon mikrokristal terhidrogenasi dengan teknik HWC-VHF-PECVD,” Reaktor, vol. 13, no. 1, 2010.
[26] L. M. Fraas, Low-cost solar electric power, vol. 9783319075303. 2014. doi: 10.1007/978-3-319-07530-3.
[27] J. Yang, A. Banerjee, and S. Guha, “Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Appl Phys Lett, vol. 70, no. 22, 1997, doi: 10.1063/1.118761.
[28] A. Rahmani and S. Vatankhah, “Improving the Efficiency of Thin Film Amorphous Silicon Solar Cell by Changing the Location and Material of Plasmonic Metallic Nanostructures,” in Energy Procedia, Elsevier Ltd, 2017, pp. 8–12. doi: 10.1016/j.egypro.2017.11.003.
[29] G. Beaucarne, “Silicon thin-film solar cells,” Adv Optoelectron, vol. 2007, 2007, doi: 10.1155/2007/36970.
[30] X. Deng, X. Liao, S. Han, H. Povolny, and P. Agarwal, “Amorphous silicon and silicon germanium materials for high-efficiency triple-junction solar cells,” Solar Energy Materials and Solar Cells, vol. 62, no. 1, 2000, doi: 10.1016/S0927-0248(99)00139-7.
[31] G. Morris, “Thin-film solar panels : What you need to know,” energysage.
[32] J. Toušková, D. Kindl, and J. Toušek, “Photovoltaic cells on CdS/CdTe heterojunctions,” physica status solidi (a), vol. 142, no. 2, 1994, doi: 10.1002/pssa.2211420230.
[33] A. Mohammad Bagher, “Types of Solar Cells and Application,” American Journal of Optics and Photonics, vol. 3, no. 5, 2015, doi: 10.11648/j.ajop.20150305.17.
[34] G. H. Tariq and M. Anis-Ur-Rehman, “Annealing effects on physical properties of doped CdTe thin films for photovoltaic applications,” Mater Sci Semicond Process, vol. 30, 2015, doi: 10.1016/j.mssp.2014.09.012.
[35] N. A. Khan et al., “Effect of laser annealing on thermally evaporated CdTe thin films for photovoltaic absorber application,” Solar Energy, vol. 173, 2018, doi: 10.1016/j.solener.2018.08.023.
[36] M. S. Hossain et al., “Impact of CdTe thin film thickness in ZnxCd1−xS/CdTe solar cell by RF sputtering,” Solar Energy, vol. 180, 2019, doi: 10.1016/j.solener.2019.01.019.
[37] R. Zia, F. Saleemi, and S. Nassem, “Optical properties of thermally evaporated CdTe thin films by varying substrate temperature,” Optik (Stuttg), vol. 127, no. 4, 2016, doi: 10.1016/j.ijleo.2015.11.069.
[38] Wirjoadi, B. Siswanto, and Sudjatmoko, “Analisis Sifat Mikro Lapisan Tipis TIN pada Substrat Al Hasil Plasma Sputtering,” in Prosiding PPI - PDIPTN, 1st ed., Yogyakarta: Pusat Teknologi Akselerator dan Proses Bahan - BATAN, 2009.
[39] B. E. McCandless and R. W. Birkmire, “Analysis of post deposition processing for CdTe/CdS thin film solar cells,” Solar Cells, vol. 31, no. 6, 1991, doi: 10.1016/0379-6787(91)90095-7.
[40] T. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, and H. M. Upadhyaya, “Solar photovoltaic electricity: Current status and future prospects,” Solar Energy, vol. 85, no. 8, 2011, doi: 10.1016/j.solener.2010.12.002.
[41] D. Bonnet, “Chapter 149 - CdTe Thin Film Modules — Progress towards Manufacture,” in World Renewable Energy Congress VI, A. A. M. Sayigh, Ed., Oxford: Pergamon, 2000, pp. 737–742. doi: https://doi.org/10.1016/B978-008043865-8/50149-5.
[42] E. Wesoff, “First Solar Hits Record 22.1% Conversion Efficiency for CdTe Solar Cell,” greentechmedia.com.
[43] C. Li et al., “Performance improvement of CdS/CdTe solar cells by incorporation of CdSe layers,” Journal of Materials Science: Materials in Electronics, vol. 32, no. 14, 2021, doi: 10.1007/s10854-021-06425-0.
[44] J. Britt and C. Ferekides, “Thin-film CdS/CdTe solar cell with 15.8% efficiency,” Appl Phys Lett, vol. 62, no. 22, 1993, doi: 10.1063/1.109629.
[45] N. Kant and P. Singh, “Review of next generation photovoltaic solar cell technology and comparative materialistic development,” Mater Today Proc, vol. 56, 2022, doi: 10.1016/j.matpr.2021.11.116.
[46] J. Park et al., Transparent Conductive Electrode for Low Power Conversion Efficiency Loss in CIGS Solar Cell Industry. 2015.
[47] J. Chen, H. Shen, Z. Zhai, and Y. Li, “Effect of e-beam evaporated elemental metal stack precursors on the property of Cu(InGa)Se2 thin films through two-step process,” Journal of Materials Science: Materials in Electronics, vol. 29, no. 23, 2018, doi: 10.1007/s10854-018-0108-8.
[48] N. Mufti et al., “Review of CIGS-based solar cells manufacturing by structural engineering,” 2020. doi: 10.1016/j.solener.2020.07.065.
[49] S. Enayati Maklavani and S. Mohammadnejad, “Enhancing the open-circuit voltage and efficiency of CZTS thin-film solar cells via band-offset engineering,” Opt Quantum Electron, vol. 52, no. 2, 2020, doi: 10.1007/s11082-019-2180-6.
[50] K. Ito, Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells. 2015. doi: 10.1002/9781118437865.
Copyright (c) 2025 Shakila Anandia Putri, Arini Dini Farhani, Alena Shania Anjani, Albert Daniel Saragih, Putri Nuri Nilam Sari, Noto Susanto Gultom
This work is licensed under a Creative Commons Attribution 4.0 International License.