FAILURE ANALYSIS OF PIPES IN A CONSTRUCTION

  • Syamsul Hadi State Polytechnic of Malang
  • Arbi Firmansyah D-IV Study Program of Production and Maintenance Mechanical Engineering, State Polytechnic of Malang, Malang 65141, Indonesia
  • Mirza Hylmi Zhafif Lukito D-IV Study Program of Production and Maintenance Mechanical Engineering, State Polytechnic of Malang, Malang 65141, Indonesia
  • Fahreza Aditya D-IV Study Program of Production and Maintenance Mechanical Engineering, State Polytechnic of Malang, Malang 65141, Indonesia
  • Aldrin Pratama Baharuddin D-IV Study Program of Production and Maintenance Mechanical Engineering, State Polytechnic of Malang, Malang 65141, Indonesia
  • Abdillh Sani bin Mohd Najib Department of Materials, Manufacturing & Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia 81310 UTM-Johor Bahru, Johor Malaysia
DOI: https://doi.org/10.52158/jameti.v1i1.1239
I will put the dimension here
Keywords: boiler, corrotion, hardness, mechanical properties, pipe

Abstract

The high working pressure, temperature, and corrosivity of the fluid flowing in the pipe cause problems in pipe failure in operation. The purpose of the analysis is to obtain information related to working conditions at pressure, temperature, and fluid corrosivity, causes of failure, initial cracking of materials, and types of materials used in a construction. The analysis method includes tracing the results of previous pipe research, studying mechanical properties, composition, hardness, stress concentration, fluid corrosivity, heat treatment, comparison between results, discussion and conclusions. Application of pipe analysis in a construction of production facilities, and factories. The conclusions obtained include: rupture of coal boiler pipes at 1100°C, tensile strength of 48.2 MPa with fluid at 730°C; dezincification and deposits with sulfur content of ~0.60 wt%, and Cl ~9.45 wt% which are corrosive; exposure to hydrogen sulfide concentrations up to 1000 ppm, the presence of localized pitting corrosion due to chloride attack up to 88 °C; erosion rate of 26.77 mm/year and corrosion rate of 1.107 mm/year causing thinning of the elbow wall of 20# steel pipe, diameter 600 mm, thickness 10 mm; working pressure of diesel engine fuel pipe at 637.5 MPa or 63.8 Bar; and so on.

References

V. Antono, W. Alfalah, and R. Windani, "Analisa Kegagalan Platen Tube Superheater PLTU Teluk Sirih," Jurnal Powerplant, vol. 6, no. 1, pp. 1-18, Mei 2018.

Mukhlis, M. M. Munir, M. Ari, H. Budi K., I. Khoirul R., "Analisa Kegagalan Superheater Tube Boiler Berpelapis Baja Tahan Karat," Seminar MASTER, pp. 253-258, 2019, http://journal.ppns.ac.id/index.php/SeminarMASTER

M. N. Chudhoifah, D. Suastiyanti, and P. Rupajati, "Analisa Kerusakan Pipa Boiler Supercritical." Jurnal Teknik Mesin ITI, vol. 4, no. 1, pp. 24-31, 2020, doi: 10.31543/jtm.v4i1.334

J. Adrian, L. Noerochim, and B. A. Kurniawan, "Analisa Kerusakan Superheater Tube Boiler Tipe ASTM A213 Grade T11," Jurnal Teknik ITS, vol. 5, no. 2, pp. 148-152, 2016.

A. A. Putra, B. Prasojo, and P. Sidi, "Analisa Kerusakan Water Wall Tube pada Coal Boiler (Studi Kasus PT Ecogreen Oleochemicals Batam," Kumpulan Jurnal dan Prosiding PPNS, vol. 8, no. 2, pp. 1-4, 2017, https://core.ac.uk/works/71745777/?t=ce0c4e16080e57ef845f6e4e78430f08-71745777

Lusiana, F. Citrawati, E. Martides, and G. Gumilar, "Analisis Kegagalan Pipa Boiler Superheater pada Pabrik Kelapa Sawit," Dinamika Jurnal Ilmiah Teknik Mesin, vol. 11, no. 1, pp. 26-32, Nov. 2019, https://doi.org/10.33772/djitm.v11i1.9357

E. Haezer, "Failure Analysis of Riser Wall Tube No.3 ASTM A210 Grade A-1 at Boiler Unit 2 Steam Power Generator PT X," Final Project TL141584, Dept. Mater. and Metallurgical Eng., ITS, pp. 1-63, 2016, https://repository.its.ac.id/71731/1/2712100130-undergraduate-theses.pdf

E. Febriyanti, A. Suhadi, and L. N. Sari, "Fatigue and Corrosion Phenomenon on Failure of Water Wall Tube Boiler," Balai Besar Teknologi Kekuatan Struktur (B2TKS), BPPT, PUSPIPTEK, Serpong, Indonesia, pp. 29-39, 2019, doi:https://doi.org/10.29122/mipi.v14i1.3565

R. Wicaksono and M. N. Ilman, "Investigasi Kebocoran Pipa Boiler Pembangkitan Listrik Tenaga Uap 65 MW," Seminar Nasional Inovasi dan Aplikasi Teknologi di Industri 2018, ITN Malang, pp. 72-77, Feb. 2018, https://ejournal.itn.ac.id/index.php/seniati/article/view/1357/1215

L. K. B. Sitompul and D. Priadi, "Root Cause Analysis of Leakage Tube Boiler: A Study Case," Journal of Materials Exploration and Findings, vol. 3, no. 2, pp. 109-119, 2024, doi: 10.7454/jmef.v3i2.1055

Pereznasrah, O. F. Homzah, “Analisa Kerusakan Pipa Ducting Scrubbing Berbahan Carbon Steel Ss400 Di Pabrik Pupuk NPK-1 PT Pusri Palembang,” vol. 15, no. 1, pp. 55-62, April 2023, 10.53893/austenit.v15i1.6684

Sulardi, “Evaluasi Kerusakan Pipa Bawah Laut dan Metode Perbaikannya,” SNITT- Politeknik Negeri Balikpapan 2020, pp. 200-206, 2020, ISBN: 978-602-51450-2-5

M. Taghipour, A. Bahrami, H. Mohammadi, and Esmaeili, V. ”Root Cause Analysis of a Failure in a Flange-pipe Welded Joint in a Steam Line in an Ammonia Plant: Experimental Investigation and Simulation Assessment,” Engineering Failure Analysis, 129, 105730, 2021, doi:10.1016/j.engfailanal.2021.10573

Sukandar, and Y. Heryana, “Analisa Kerusakan Pipa Air Pengumpan Boiler,” Jurnal Teknik Mesin: Cakram, vol. 3, no. 2, pp. 76-85, Okt. 2020.

E. S. Kaya, E. Uckan, M. J. O’Rourke, S. A. Karamanos, B. Akbas, F. Cakir, and Y. Cheng, “Failure Analysis of a Welded Steel Pipe at Kullar Fault Crossing,” Engineering Failure Analysis, 71, pp. 43-62, Nov. 2016, doi:10.1016/j.engfailanal.2016.10.004

R. K. Hosseini, and S. Yareiee, "Failure analysis of boiler tube at a petrochemical plant," Eng. Fail. Anal., vol. 104, Art. no. 104146, Aug. 2019, https://doi.org/10.1016/j.engfailanal.2019.104146

R. Guo, S. Xue, T. Yang, and X. Liu, "Analysis of the Reasons for the Leakage of a Boiler Water-Wall Tube in a Power Plant," MTAEC9, vol. 54, no. 2, pp. 221-229, 2020, doi: 10.17222/mit.2019.205

D. Bi, Z. Zhao, M. Zhang, M. Li, and Y. Su, “Failure Analysis of S30408 Pipe Cracking,” Strength, Frac. and Complexity, vol. 17, no. 1, pp. 11-25, 2024, doi:10.3233/SFC 230018

Mujiono, and F. Mubarok, ”Failure Analysis of API 5L Grade B Underground Crude Oil Transfer Pipe,” Engineering Proceedings, 63, 29, 2024, doi.org/10.3390/engproc2024063029

S. Nasrazadani, M. A. Akhtar, A. Patel, and C. Ezell, ”Failure Analysis of API 5L (Grade B) oil Field Separator Flowline Pipe,” Journal of Failure Analysis and Prevention, 18, pp. 721-726, 2018, https://doi.org/10.1007/s11668-018-0454-0

M. G. Martınez . M. P. V. Gonzalez, A. G. Meije, A. P. Muro, “Failure Analysis of a Steel Elbow Pipe from a Gas Well,” Journal of Failure Analysis and Prevention, 20, pp. 723-733, 2020, https://doi.org/10.1007/s11668-020-00870-5

Y. Li, J. Zhang, G. Su, A. Sandy, and Y. Xin, ”Investigation on Multiphase Erosion–Corrosion of Elbow in LPG Desulfurization Unit,” Metals, vol. 13, no. 2, pp. 256-?, 2023, https://doi.org/10.3390/met13020256

S. Rajole , P. R. Sondar , S. Hiremath, K. and S Ravishanka, “Failure Analysis of Industrial Discharge Hopper Pipe,” Journal of Modern Manufacturing Systems and Technology, vol. 5, no. 1, pp. 1-6, 2020, doi:https://doi.org/10.15282/jmmst.v5i1.5149

A. A. Hamed, K. S. Ahmed, and N. M. Salah, “Failure Analysis of Welded Steam Boiler Flange,” International Journal of Materials Technology and Innovation, vol. 3, no. 2, pp. 30-36, 2023, https://doi.org/ 10.21608/IJMTI.2023.204369.1083

F. Yushandiana, H. Setiana, and E. Pujiyulianto, ”Case study: the Failure Analysis of Pipe ASTM A351 HK-40 in Reaction Plant Unit,” Journal of Failure Analysis and Prevention, vol. 20, no. 3, pp. 663-670, 2020, https://doi.org/10.1007/s11668-020-00885-y

J. Zhang, W. Li, J. Lin, Y. Qiu, Y. Yuan, and T. Zhou, ”Failure Analysis of a High-Pressure Fuel Pipe of Engine,” Engineering Failure Analysis, 103, pp. 70-81, 2019, doi:10.1016/j.engfailanal.2019.04.040

M. A. Tripangestu, A. Zakiyuddin, “Failure Analysis of Skid Pipe Leaks in Walking Beam Type Reheating Furnace Applications,” Indonesian Journal of Engineering and Science, vol. 5, no. 2, pp. 45-54, 2024, https://doi.org/10.51630/ijes.v5i2.136

K. Mankari, and S. G. Acharyya, ”Failure Analysis of AISI 321 Stainless Steel Welded Pipes in Solar Thermal Power Plants,” Engineering Failure Analysis, 86, pp. 33-43, 2018, doi:10.1016/j.engfailanal.2017.12.020

M. E. Stevenson, H. C. Iwand, J. L. McDougall, P. D. Umberger, J. A. Wilkinson, M. T. Kenner, and D. H. Stone, ”Failure Analysis of an Aluminum Chiller Pipe by Experimental Simulation and Stress Analysis,” Journal of Failure Analysis and Prevention, vol. 17, no. 5, pp. 1090-1098, 2017, https://doi.org/10.1007/s11668-017-0341-0

Z. Mehmood, A. Hameed, A. Javed, A. Hussain, “Analysis of premature failure of aircraft hydraulic pipes, ”Engineering Failure Analysis, vol. 109, no. 104356, 2020, https://doi.org/10.1016/j.engfailanal.2019.104356

Published
2025-06-30
How to Cite
Hadi, S., Firmansyah, A., Lukito, M. H. Z., Aditya, F., Baharuddin, A. P., & Najib, A. S. bin M. (2025). FAILURE ANALYSIS OF PIPES IN A CONSTRUCTION. Journal of Applied Mechanical Engineering Technology and Innovation, 1(1), 30-39. https://doi.org/10.52158/jameti.v1i1.1239
Section
Articles

Most read articles by the same author(s)