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Abstract

Accurate prediction of solar irradiance plays a critical role in the planning and operation of renewable energy systems,
particularly for photovoltaic integration and energy management. This study investigates the use of a deep learning approach
based solely on Convolutional Neural Networks (CNN) to forecast short-term solar irradiance values. The model is trained
using normalized multivariate time series data, which include several meteorological parameters as input features. The CNN
architecture is designed to extract temporal patterns from the input sequences and predict radiation intensity at the next time
step. Experimental results show that the proposed model achieves strong predictive performance, with a Mean Squared Error
(MSE) of 0.0006, Root Mean Squared Error (RMSE) of 0.0242, Mean Absolute Error (MAE) of 0.0184, and a coefficient of
determination (R?) of 0.9607. These findings demonstrate that CNN, despite its simplicity, is capable of effectively learning
complex temporal relationships in solar irradiance data. Furthermore, the loss curves for both training and validation sets
indicate stable convergence without signs of overfitting. The results suggest that CNN-based forecasting models can offer a
lightweight and accurate solution for real-time solar prediction applications, especially when computational resources are
limited. This study highlights that a lightweight standalone CNN can achieve stable and competitive performance without
relying on recurrent architectures, making it suitable for real-time solar irradiance forec

Keywords: Solar Irradiance Forecasting, Convolutional Neural Network, Deep Learning, Time Series Prediction, Renewable
Energy.

Abstrak

Prediksi yang akurat dari iradian surya memainkan peran penting dalam perencanaan dan pengoperasian sistem energi
terbarukan, terutama untuk integrasi fotovoltaik dan manajemen energi. Studi ini menyelidiki penggunaan pendekatan
pembelajaran mendalam yang hanya didasarkan pada Jaringan Syaraf Tiruan (CNN) untuk meramalkan nilai iradian surya
jangka pendek. Model ini dilatih menggunakan data deret waktu multivariat yang dinormalisasi, yang mencakup beberapa
parameter meteorologi sebagai fitur input. Arsitektur CNN dirancang untuk mengekstrak pola temporal dari urutan input dan
memprediksi intensitas radiasi pada langkah waktu berikutnya. Hasil eksperimen menunjukkan bahwa model yang diusulkan
mencapai kinerja prediktif yang kuat, dengan Mean Squared Error (MSE) sebesar 0.0006, Root Mean Squared Error (RMSE)
sebesar 0.0242, Mean Absolute Error (MAE) sebesar 0.0184, dan koefisien determinasi (R?) sebesar 0.9607. Temuan ini
menunjukkan bahwa CNN, terlepas dari kesederhanaannya, mampu secara efektif mempelajari hubungan temporal yang
kompleks dalam data penyinaran matahari. Selain itu, kurva kerugian untuk ser pelatihan dan validasi menunjukkan
konvergensi yang stabil tanpa tanda-tanda overfitting. Hasil penelitian menunjukkan bahwa model prakiraan berbasis CNN
dapat menawarkan solusi yang ringan dan akurat untuk aplikasi prediksi matahari secara real-time, terutama ketika sumber
daya komputasi terbatas. Penelitian ini menegaskan bahwa CNN standalone yang ringan mampu memberikan performa
prediksi yang stabil tanpa bergantung pada arsitektur rekuren, sehingga berpotensi diterapkan untuk prediksi iradian surya
secara waktu nyata.

Kata Kunci: Prakiraan Iradian Surya, Jaringan Saraf Konvolusi, Pembelajaran Mendalam, Prediksi Deret Waktu, Energi
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1. Pendahuluan panjang seperti pada LSTM atau GRU. Pada prediksi
CNN  dipilih  dalam  penelitian ini karena iradian surya jangka pendek, fluktuasi cepat akibat

. perubahan kondisi atmosfer dan pola harian lebih
kemampuannya mengekstraksi pola temporal lokal . . . .
. L dominan dibandingkan ketergantungan temporal jangka
secara efisien tanpa memerlukan memori jangka
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panjang, sehingga CNN menjadi alternatif yang lebih
ringan dan efisien dengan kompleksitas komputasi
rendah serta sesuai untuk aplikasi waktu nyata. Di sisi
lain, pemanfaatan energi terbarukan seperti surya,
angin, dan biogas menjadi solusi penting untuk
meningkatkan akses energi, khususnya di daerah
dengan rasio elektrifikasi rendah seperti Tulakan, Jawa
Timur. Simulasi menunjukkan bahwa kombinasi
sumber  energi  terbarukan  tersebut = mampu
menghasilkan output energi yang signifikan dan
mendukung pencapaian elektrifikasi hingga 100%. [1].
Selain itu, kemajuan dalam pemodelan prediktif dan
teknik pembelajaran mesin memiliki potensi untuk
merevolusi cara kita meramalkan iradian surya,
sehingga meningkatkan efisiensi sistem fotovoltaik.
Dengan memanfaatkan data cuaca historis dan kondisi
atmosfer secara real-time, teknologi ini dapat
memberikan prakiraan yang lebih akurat yang dapat
beradaptasi dengan perubahan faktor lingkungan, yang
pada akhirnya menghasilkan solusi manajemen dan
penyimpanan energi yang lebih baik. Sebagai contoh,
di Indonesia, di mana energi surya melimpah namun
kurang dimanfaatkan, penerapan
semacam itu dapat secara signifikan meningkatkan
kelayakan proyek tenaga surya, selaras dengan tujuan
pemerintah untuk mencapai 23% penggunaan energi
terbarukan pada tahun 2025 [2]. Selain itu,
mengintegrasikan model-model prediktif ini dengan
teknologi smart grid dapat memfasilitasi infrastruktur
energi yang lebih tangguh, yang mampu merespons
fluktuasi pasokan dan permintaan secara dinamis
sekaligus mengurangi ketergantungan pada bahan bakar
fosil [3]. Sebagai alternatif, pendekatan berbasis
machine learning dapat digunakan untuk meningkatkan
akurasi prediksi [4].

Oleh karena itu, penelitian ini berfokus pada evaluasi
penggunaan Convolutional Neural Network (CNN)
standalone berarsitektur sederhana untuk prediksi
iradian surya jangka pendek. Berbeda dengan penelitian
sebelumnya yang menggunakan model rekuren atau
pendekatan hibrida yang kompleks, penelitian ini
menunjukkan bahwa CNN dengan kompleksitas rendah
mampu mencapai konvergensi yang stabil dan
performa prediksi yang tinggi. Pendekatan ini
diharapkan menjadi solusi yang efisien dan layak untuk
prediksi waktu nyata pada sistem energi pintar dengan
keterbatasan sumber daya komputasi. [S5]. Dalam
beberapa tahun terakhir, pendekatan pembelajaran
mendalam (deep learning) telah menunjukkan potensi
yang besar dalam memodelkan data deret waktu,
termasuk untuk prediksi cuaca dan energi. CNN telah
terbukti efektif dalam berbagai aplikasi, dan
adaptasinya untuk analisis deret waktu menunjukkan
hasil yang menjanjikan dalam prediksi yang lebih
akurat [6]. Dengan kemampuan ini, CNN menjadi alat
yang sangat efektif dalam berbagai aplikasi, termasuk
pengenalan suara dan analisis video [7]. Penelitian ini
berfokus pada pengembangan dan evaluasi model

prediksi iradian surya jangka pendek berbasis CNN.
Model ini diharapkan dapat meningkatkan akurasi
prediksi dan membantu dalam pengambilan keputusan
terkait penggunaan energi terbarukan [8]. Tidak seperti
pendekatan hibrida yang menggabungkan CNN dengan
model lain seperti LSTM, studi ini mengeksplorasi
efektivitas CNN secara mandiri dalam memprediksi
nilai radiasi menggunakan data lingkungan multivariat.
Meskipun CNN dapat memberikan hasil yang
menjanjikan, penting untuk mempertimbangkan potensi
penggabungan dengan model lain untuk meningkatkan
akurasi prediksi [9]. Model diuji menggunakan data
historis yang telah dinormalisasi, dengan target untuk
memprediksi nilai radiasi pada langkah waktu
berikutnya. Evaluasi dilakukan menggunakan metrik
kuantitatif seperti MSE, RMSE, MAE, dan koefisien
determinasi  R-squared (R?) untuk memberikan
gambaran yang komprehensif tentang kinerja model,
serta analisis visual terhadap kurva loss dan hasil
prediksi [12]. Tujuan dari penelitian ini akan
mengidentifikasi potensi CNN dalam mengoptimalkan
penggunaan energi terbarukan dengan memanfaatkan

sistem prediktif data iradian surya yang akurat dan tepat waktu, serta

penelitian ini diharapkan dapat memberikan wawasan
baru mengenai penerapan teknologi CNN dalam
peramalan data yang dapat meningkatkan efisiensi
sistem energi pintar berbasis [oT [13], [10]. Penelitian
ini juga bertujuan untuk memberikan kontribusi
terhadap literatur dengan menawarkan pendekatan yang
harapkan dapat meningkatkan pemahaman dan
aksesibilitas bagi peneliti dan praktisi yang ingin
menerapkan teknologi dalam analisis data [11].

Kontribusi utama dari penelitian ini adalah
menunjukkan bahwa model Convolutional Neural
Network (CNN) standalone dengan arsitektur yang
sederhana mampu mencapai performa prediksi yang
stabil dan kompetitif untuk prediksi iradian surya
jangka pendek. Berbeda dengan sebagian besar
penelitian sebelumnya yang mengandalkan model
rekuren seperti LSTM/GRU atau arsitektur hibrida
yang lebih kompleks, penelitian ini menekankan bahwa
dependensi temporal jangka panjang tidak selalu
diperlukan untuk prediksi iradian surya real-time.
Pemilihan transformasi fitur berbasis ConvlD dengan
kernel size kecil memungkinkan model mencapai

kompleksitas ~ komputasi  yang rendah  tanpa
mengorbankan akurasi secara signifikan. Dengan
demikian,  kontribusi  penelitian ini  bersifat

implementatif dan kontekstual, khususnya untuk sistem
energi pintar dan perangkat edge dengan keterbatasan
sumber daya komputasi..

2. Metode Penelitian

Penelitian ini menggunakan pendekatan deep learning
berbasis Convolutional Neural Network (CNN) untuk
melakukan prediksi nilai iradian surya berdasarkan data
historis multivariat. Metode ini memungkinkan analisis
yang lebih akurat dan efisien terhadap pola iradian
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surya dengan memanfaatkan kemampuan CNN dalam
mengklasifikasi dan memproses data kompleks [14].
Proses penelitian mencakup tahapan persiapan data,
arsitektur model, pelatihan, evaluasi, dan visualisasi
hasil. Setiap tahapan tersebut memiliki peran penting
dalam memastikan kualitas dan akurasi dari model
yang dihasilkan [15]. Diagram blok keseluruhan proses
ditunjukkan pada Gambar 1.
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Gambar 1. Diagram Blok Keseluruhan CNN
2.1. Dataset dan Pra-Pemrosesan

Data iradian surya yang digunakan dalam penelitian ini
berasal dari dua berkas CSV, yaitu Radiation_test.csv
untuk data latih dan Radiation valid.csv untuk data uji.
Data ini akan dianalisis untuk memahami pola iradian
surya yang dapat berpengaruh terhadap berbagai
fenomena lingkungan [16]. Kedua dataset berisi

variabel lingkungan seperti suhu, kelembapan,
kecepatan angin, dan tekanan udara, dengan kolom
target berupa nilai iradian surya. Data ini akan
membantu dalam menganalisis hubungan antara
variabel lingkungan dan iradian surya yang diterima
[17]. Sebelum digunakan dalam pelatihan model, data
mengalami beberapa tahapan pra-pemrosesan:

Penghapusan  kolom  [rrelevan: Kolom seperti
UNIXTime, Data, Time, TimeSunRise, dan TimeSunSet
dihapus karena tidak memberikan kontribusi langsung
terhadap proses prediksi.

Pemisahan Fitur dan Target: Data dibagi menjadi
variabel input (X) dan target output (y), di mana
Radiation dijadikan sebagai variabel target.
Normalisasi: Untuk memastikan semua fitur berada
pada skala yang sama, digunakan MinMaxScaler untuk
mereduksi nilai ke rentang [0, 1].

Normalisasi dilakukan baik untuk fitur input maupun
target output. Reshape Data: Dataset diubah ke dalam
format tiga dimensi [samples, time steps, features]
untuk memenuhi struktur input yang dibutuhkan oleh
layer CNN 1D.

2.2. Arsitektur Model CNN

Model CNN dibangun menggunakan framework
TensorFlow dan  Keras untuk memudahkan
implementasi dan pelatihan model deep learning.
TensorFlow dan Keras menyediakan alat yang fleksibel
untuk pengembangan aplikasi berbasis jaringan saraf
[18]. Arsitektur yang digunakan terdiri dari beberapa
lapisan utama, yaitu:

ConviD Layer: Digunakan untuk mengekstraksi fitur
lokal dari data input deret waktu. Layer ini
menggunakan 16 filter dengan ukuran kernel 1 dan
aktivasi ReLU. Pemilihan kernel size sebesar 1
bertujuan untuk melakukan transformasi fitur pada
setiap time step tanpa mencampurkan informasi
temporal antar waktu. Pendekatan ini memungkinkan
CNN untuk fokus pada hubungan antar fitur lingkungan
pada satu titik waktu, sekaligus mengurangi
kompleksitas komputasi. Desain ini sesuai untuk
prediksi iradian surya jangka pendek, di mana
perubahan cepat antar fitur lebih dominan dibanding
ketergantungan temporal jangka panjang. Layer ini
berfungsi untuk meningkatkan kemampuan model
dalam mengenali pola yang lebih kompleks dalam data
deret waktu [19].

Dropout Layer: Dropout sebesar 10% diterapkan
setelah ConvID untuk mengurangi overfitting, dan
teknik ini telah terbukti efektif dalam meningkatkan
kinerja model pada berbagai tugas pembelajaran
terawasi [20].

Flatten Layer: Lapisan ini mengubah keluaran dari
dimensi 3D menjadi 1D agar dapat diteruskan ke layer
Dense.
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Dense Layer: Dua layer dense digunakan, yaitu satu
dengan 32 unit dan aktivasi ReLU, serta satu layer
output dengan satu neuron tanpa fungsi aktivasi untuk
menghasilkan prediksi akhir. Penambahan /ayer ini
bertujuan untuk meningkatkan akurasi model dalam
klasifikasi data, sejalan dengan temuan bahwa fungsi
aktivasi ReLu menunjukkan kinerja yang lebih baik
dalam neural network [21], [22].

Model dikompilasi menggunakan Adam Optimizer
dengan learning rate sebesar 0.0005 dan menggunakan
Mean Squared Error (MSE) sebagai fungsi loss. Model
ini diharapkan dapat meningkatkan akurasi deteksi
mengingat Adam Optimizer telah terbukti efektif dalam
pelatihan model klasifikasi sebelumnya [23], [24].

2.3. Proses Pelatihan dan Validasi

Model dilatih selama 20 epoch dengan batch size
sebesar 64, menggunakan data latih dan divalidasi
terhadap data uji. Proses pelatihan dilakukan tanpa
early stopping, namun jumlah epoch dibatasi untuk
menghindari overfitting dan menjaga stabilitas proses
training. Hasil evaluasi menunjukkan bahwa model
mampu mencapai akurasi yang memuaskan pada data
uji [30].

Selama pelatihan, nilai /oss untuk data pelatihan dan
validasi dicatat untuk dianalisis dan divisualisasikan.
Evaluasi model dilakukan berdasarkan hasil prediksi
terhadap data uji, kemudian dibandingkan dengan nilai
aktual untuk menghitung metrik performa. Proses ini
penting untuk memahami seberapa baik model dapat
menangkap pola dalam data yang lebih besar [25].

2.4. Evaluasi Model

Evaluasi dilakukan dalam skala normalisasi [0-1]
menggunakan beberapa metrik umum untuk regresi,
yaitu:

Mean Squared Error (MSE)

MSE menghitung rata-rata dari kuadrat selisih antara
nilai aktual ( ) dan prediksi model ( ). Karena
selisihnya dikuadratkan, MSE sangat peka terhadap
outlier atau kesalahan besar. Nilai MSE yang rendah
menunjukkan bahwa rata-rata kesalahan kuadrat
prediksi terhadap data aktual kecil. Berikut rumus MSE:

MSE = /1 L =)

Root Mean Squared Error (RMSE)

RMSE adalah akar kuadrat dari MSE. Keunggulannya
adalah satuannya sama dengan target output (misalnya
jika prediksi dalam satuan W/m?, maka RMSE juga
dalam W/m?). RMSE sering digunakan dalam analisis
kinerja sistem MIMO (multiple input, multiple output)
untuk memberikan gambaran yang lebih jelas tentang
kesalahan prediksi dibandingkan dengan MSE, karena
satuan yang konsisten dengan output target [26]. RMSE
memberikan gambaran tentang seberapa jauh prediksi

(1)

model menyimpang dari nilai sebenarnya secara rata-
rata. Nilai lebih kecil = prediksi lebih akurat. Berikut
rumus RMSE:

RMSE=v = [* _( - ) 2)

Mean Absolute Error (MAE)

MAE mengukur rata-rata selisih absolut (tanpa arah)
antara prediksi dan nilai aktual. Tidak seperti MSE dan
RMSE, MAE tidak mengkuadratkan selisih, sehingga
tidak terlalu dipengaruhi oleh outlier. Nilai MAE
mudah diinterpretasi: berapa rata-rata "jarak" antara
prediksi dan data aktual. MAE merupakan metrik yang
sering digunakan dalam evaluasi model prediksi untuk
memberikan gambaran yang lebih jelas tentang akurasi
model [27]. Berikut rumus MAE:

MAE== _ | - | 3)

Koefisien Determinasi (R?)

R? menunjukkan berapa proporsi variasi dalam data

aktual yang bisa dijelaskan  oleh  model,
" adalah nilai rata — rata dari seluruh aktual, ~ R?
Menggambarkan  sejauh mana model mampu
menjelaskan variansi dari data aktual; semakin

mendekati 1, semakin baik kemampuan prediktif model
tersebut. Berikut rumus R*:
(=P
R2=1-—2=1 4
=2 =) “)

Nilainya berkisar antara 0 dan 1:

R? =1 — prediksi sempurna.

R? =0 — model tidak lebih baik dari rata-rata.
Bisa negatif jika model sangat buruk.

Selain evaluasi numerik, juga dilakukan visualisasi
hasil berupa grafik perbandingan antara /oss pelatihan
dan validasi, serta grafik prediksi terhadap nilai aktual
untuk menilai kemampuan model dalam mengikuti pola
temporal iradian surya. Grafik ini diharapkan dapat
memberikan wawasan yang lebih mendalam mengenai
performa model serta area yang perlu diperbaiki untuk
meningkatkan akurasi prediksi [28]. Dengan demikian,
analisis ini akan menjadi langkah penting dalam
pengembangan model yang lebih robust dan adaptif
terhadap perubahan pola radiasi [29].

3. Hasil dan Pembahasan

Penelitian ini mengevaluasi kinerja model CNN dalam
memprediksi nilai iradian surya berdasarkan data waktu
nyata yang telah dinormalisasi. Hasil pengujian
dilakukan pada data uji yang terpisah dan tidak
digunakan selama proses pelatihan. Evaluasi mencakup
metrik numerik dan analisis visual terhadap grafik loss
serta grafik prediksi.
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3.1. Hasil Evaluasi Model

Model CNN dilatih selama 20 epoch dengan batch size
sebesar 64. Setelah pelatihan, prediksi dilakukan
terhadap data uji, dan hasilnya dibandingkan dengan
data aktual menggunakan empat metrik evaluasi.
Ringkasan hasil evaluasi ditampilkan pada Tabel 1.

Tabel 1. Hasil evaluasi model CNN pada data uji (skala normalisasi)

Metrik Nilai
Mean Squared Error (MSE) 0.0006
Root Mean Squared Error (RMSE) 0.0242
Mean Absolute Error (MAE) 0.0184
Koefisien Determinasi (R?) 0.9607

Nilai RMSE sebesar 0.0242 menunjukkan bahwa rata-
rata kesalahan prediksi berada pada tingkat yang rendah
dalam skala 0-1. Demikian pula, nilai MAE sebesar
0.0184 menunjukkan bahwa kesalahan mutlak rata-rata
dalam prediksi juga tergolong kecil. Nilai R? sebesar

0.9607 mengindikasikan bahwa model mampu
menjelaskan  sekitar 96%  variasi data aktual,
menandakan performa yang sangat baik dalam

menangkap pola temporal iradian surya. Nilai RMSE
sebesar 0.0242 menunjukkan bahwa rata-rata kesalahan
prediksi berada pada tingkat yang rendah dalam skala
0-1. Demikian pula, nilai MAE sebesar 0.0184
menunjukkan bahwa kesalahan mutlak rata-rata dalam
prediksi juga tergolong kecil. Nilai R? sebesar 0.9607
mengindikasikan bahwa model mampu menjelaskan
sekitar 96% variasi data aktual, menandakan performa
yang sangat baik dalam menangkap pola temporal
iradian surya.

3.2. Analisis Kurva Loss

Untuk mengevaluasi stabilitas pelatihan, dilakukan
analisis terhadap grafik loss selama pelatihan, baik
pada data latih maupun validasi. Grafik disajikan pada
Gambar 2.

CNN Training VS Validation Loss (Overlap)

Loss (MSE - Scaled)

10.0 125 150 17

Epoch

Gambar 1. Grafik Training dan Validation Loss

Grafik menunjukkan bahwa training loss dan
validation loss mengalami penurunan yang stabil dan
konvergen. Tidak ditemukan perbedaan mencolok
antara keduanya, yang menandakan bahwa model tidak
mengalami overfitting. Validasi loss bergerak sejajar

dengan training loss hingga akhir pelatihan,
menunjukkan bahwa model dapat melakukan
generalisasi terhadap data yang belum pernah dilihat.
Konvergensi yang cepat dan stabil ini juga didukung
oleh penggunaan /learning rate rendah dan Ilayer
dropout sebesar 10%, yang berfungsi untuk mencegah
model terlalu bergantung pada pola tertentu dalam data
latih. Grafik menunjukkan bahwa training loss dan
validation loss mengalami penurunan yang stabil dan
konvergen. Tidak ditemukan perbedaan mencolok
antara keduanya, yang menandakan bahwa model tidak
mengalami overfitting. Validasi loss bergerak sejajar
dengan training loss hingga akhir pelatihan,
menunjukkan bahwa model dapat melakukan
generalisasi terhadap data yang belum pernah dilihat.
Konvergensi yang cepat dan stabil ini juga didukung
oleh penggunaan /learning rate rendah dan Ilayer
dropout sebesar 10%, yang berfungsi untuk mencegah
model terlalu bergantung pada pola tertentu dalam data
latih.Grafik menunjukkan bahwa training loss dan
validation loss mengalami penurunan yang stabil dan
konvergen. Tidak ditemukan perbedaan mencolok
antara keduanya, yang menandakan bahwa model tidak
mengalami overfitting. Validasi loss bergerak sejajar
dengan training loss hingga akhir pelatihan,
menunjukkan bahwa model dapat melakukan
generalisasi terhadap data yang belum pernah dilihat.

Konvergensi yang cepat dan stabil ini juga didukung
oleh penggunaan /learning rate rendah dan Ilayer
dropout sebesar 10%, yang berfungsi untuk mencegah
model terlalu bergantung pada pola tertentu dalam data
latih.

3.3. Visualisasi Hasil Prediksi

Untuk menilai kemampuan model secara visual,
dilakukan perbandingan antara hasil prediksi dan data
aktual. Grafik hasil prediksi terhadap data aktual
ditampilkan pada Gambar 3.
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Gambar 2. Grafik perbandingan nilai aktual dan prediksi iradian
surya

Dari Gambar 2, terlihat bahwa prediksi model (garis
putus-putus) mengikuti pola data aktual (garis solid)
dengan sangat baik. Puncak-puncak pada siang hari dan
penurunan mendadak pada sore atau pagi hari berhasil
ditangkap dengan akurat oleh model. Pola periodik
harian dan variasi jangka pendek akibat kondisi cuaca
seperti awan juga terlihat dapat diakomodasi oleh CNN.
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Deviasi kecil, terutama saat terjadi perubahan ekstrem
yang cepat (misalnya lonjakan atau penurunan
mendadak dalam waktu singkat). Hal ini umum terjadi
pada model deret waktu dan dapat diatasi dengan
memasukkan fitur tambahan seperti kelembapan,
tutupan awan, atau indeks UV.

3.4. Pembahasan

Hasil evaluasi menunjukkan bahwa model CNN
memiliki kapabilitas yang tinggi dalam melakukan
prediksi jangka pendek terhadap data iradian surya.
Meskipun CNN tidak memiliki mekanisme memori
jangka panjang seperti LSTM atau GRU, arsitektur ini
tetap mampu menangkap pola temporal secara efektif
karena data disiapkan dengan representasi fitur yang
cukup lengkap serta didukung oleh proses normalisasi
yang tepat. Hasil eksperimen juga memperlihatkan
bahwa CNN mampu mengenali pola periodik harian
dan fluktuasi cepat iradian surya dengan baik, yang
mengindikasikan bahwa pada prediksi iradian surya
jangka pendek, dependensi temporal jangka panjang
tidak selalu menjadi faktor dominan. Pola lokal dan
perubahan cepat yang tercermin dalam fitur
meteorologi terbukti sudah cukup informatif untuk
menghasilkan prediksi yang akurat.

Arsitektur CNN yang relatif dangkal dan tidak bersifat
rekuren memberikan keuntungan dari sisi efisiensi
komputasi. Tidak adanya proses backpropagation
through time mengurangi beban komputasi selama
pelatthan maupun inferensi. Hal ini menjadi
keunggulan penting untuk aplikasi prediksi waktu nyata,
khususnya pada sistem dengan keterbatasan sumber
daya seperti perangkat edge atau sistem energi berbasis
IoT.

Performa tinggi dengan kompleksitas model yang
relatif rendah menunjukkan bahwa CNN berpotensi
menjadi solusi efisien untuk sistem prediksi waktu
nyata, khususnya pada perangkat dengan keterbatasan
sumber daya komputasi seperti edge devices atau IoT
node.

Meskipun menunjukkan performa yang baik, model
CNN memiliki beberapa keterbatasan. CNN kurang
efektif dalam menangkap dependensi temporal jangka
panjang dan variasi musiman yang kompleks
dibandingkan model rekuren. Selain itu, pada kondisi
ekstrem seperti perubahan cuaca yang sangat cepat atau
tingkat awan tinggi, deviasi prediksi masih dapat terjadi.
Arsitektur dan hyperparameter yang digunakan juga
belum dieksplorasi secara menyeluruh. Oleh karena itu,
pengembangan lebih lanjut seperti penggunaan model
hibrida CNN-LSTM, mekanisme attention, atau
optimasi hyperparameter otomatis dapat menjadi arah
penelitian selanjutnya.

4. Kesimpulan

Temuan utama penelitian ini adalah bahwa CNN
dengan arsitektur sederhana dapat memberikan trade-

off yang seimbang antara akurasi dan kompleksitas,
sehingga berpotensi dipertimbangkan sebagai solusi
prediksi iradian surya jangka pendek berbasis waktu
nyata.

Penelitian ini menunjukkan bahwa model deep learning
berbasis Convolutional Neural Network (CNN) dapat
digunakan secara efektif untuk melakukan prediksi
jangka pendek terhadap nilai iradian surya. Dengan
memanfaatkan data historis multivariat yang telah
dinormalisasi dan diproses dalam format deret waktu,
model CNN yang dikembangkan berhasil mencapai
kinerja yang tinggi, ditandai dengan nilai RMSE
sebesar 0.0242, MAE sebesar 0.0184, dan koefisien
determinasi (R?) sebesar 0.9607 pada data uji.

Model mampu mengenali pola periodik dan fluktuasi
harian iradian surya secara konsisten, serta
menunjukkan kurva pelatihan dan validasi yang stabil
tanpa indikasi overfitting. Hal ini membuktikan bahwa
arsitektur CNN, meskipun sederhana dan ringan, tetap
memiliki kemampuan yang baik dalam mengekstraksi
fitur temporal dari data lingkungan.

Temuan ini mengindikasikan bahwa CNN dapat
menjadi alternatif efisien untuk prediksi energi surya
berbasis waktu nyata, khususnya dalam penerapan di
sistem energi pintar atau perangkat [oT yang memiliki
keterbatasan sumber daya. Ke depan, pengembangan
model dapat ditingkatkan melalui penambahan fitur
eksternal, optimasi arsitektur, serta penggunaan teknik
hybrid dan attention mechanism untuk menangani
prediksi dalam kondisi cuaca yang lebih kompleks.
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