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Abstract

Face spoofing poses a major threat to facial recognition—based authentication systems, especially in web-based environments
that require lightweight and real-time verification. This study develops a real-time anti-spoofing system that integrates
YOLOv8n for classifying four facial categories (real, printed, digital, and mask), combined with blink-based liveness
verification using the Eye Aspect Ratio (EAR). Using 400,800 images and 18 videos, two training strategies—pretrained and
from scratch—were evaluated. The pretrained model achieved a precision of 99.5%, recall of 98.6%, mAP50 of 99.4%, and
mAP50-95 of 90.4%, slightly outperforming the from-scratch model. EAR threshold evaluation showed that a value of 0.17
yielded the best performance with 99.02% accuracy, 100% recall, a FAR of 16.11%, and an FRR of 0%. The proposed
integration of YOLOv8n and EAR represents a practical novelty for lightweight, web-based anti-spoofing, providing fast
inference and stable real-time performance suitable for modern facial authentication systems.
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Abstrak

Face spoofing merupakan ancaman bagi sistem autentikasi berbasis wajah, terutama pada aplikasi web yang membutuhkan
proses verifikasi yang ringan dan real-time. Penelitian ini mengembangkan sistem anti-spoofing real-time yang
mengintegrasikan YOLOv8n untuk mengklasifikasikan empat kategori wajah (real, printed, digital, dan mask) serta verifikasi
liveness melalui deteksi kedipan berbasis Eye Aspect Ratio (EAR). Dengan menggunakan 400.800 citra dan 18 video, dua
strategi pelatihan—pretrained dan from scratch—dievaluasi. Model pretrained mencapai precision 99,5%, recall 98,6%,
mAP50 99,4%, dan mAP50-95 90,4%, sedikit lebih tinggi dibandingkan model from scratch. Evaluasi ambang EAR
menunjukkan bahwa nilai 0,17 menghasilkan performa terbaik dengan akurasi 99,02%, recall 100%, FAR 16,11%, dan FRR
0%. Integrasi YOLOv8n dan EAR ini menjadi kontribusi praktis yang menawarkan solusi anti-spoofing berbasis web yang
ringan dengan inferensi cepat dan performa real-time yang stabil untuk kebutuhan autentikasi wajah modern.

Kata kunci: Face Recognition, Anti-Spoofing, YOLOv8N, Eye Aspect Ratio, Facial Landmark, Real-Time

1. Pendahuluan dan 99,4% pada CelebA-Spoof [2]. Pendekatan lain
yang mengombinasikan Histogram of Oriented
Gradients (HOG), Support Vector Machine (SVM), dan
deteksi kedipan mata dilaporkan mampu mencapai
akurasi 92,68% [3]. Pendekatan berbasis YOLOv3-
YOLOV5 juga menunjukkan hasil yang kompetitif,
dengan akurasi mencapai 98,2% pada dataset CASIA-
FASD [4]. Di sisi lain, beberapa metode FAS
memanfaatkan sensor tambahan seperti depth atau NIR
untuk meningkatkan akurasi, tetapi solusi ini
membutuhkan perangkat keras khusus yang relatif
mahal dan kurang praktis untuk aplikasi web maupun
perangkat edge dengan keterbatasan komputasi [1], [5].

Teknologi pengenalan wajah banyak digunakan dalam
sistem keamanan biometrik, seperti pengendalian akses,
pembayaran digital, dan identifikasi pengguna. Namun,
meningkatnya penggunaan teknologi ini disertai dengan
bertambahnya serangan spoofing, di mana penyerang
memalsukan identitas menggunakan foto, video, atau
masker sehingga sistem salah mengenali objek palsu
sebagai wajah asli [1]. Serangan seperti ini berpotensi
dimanfaatkan untuk tujuan jahat dan dapat
membahayakan keamanan sistem. Oleh karena itu, Face
Anti-Spoofing (FAS) menjadi sangat penting untuk
memastikan bahwa wajah yang dikenali oleh sistem
benar-benar berasal dari individu secara langsung. Performa deteksi pada edge device sangat bervariasi.
Varian ringan YOLOv3-tiny yang direduksi mencapai
sekitar 25.9 FPS pada CPU laptop, menunjukkan bahwa
optimisasi arsitektur dapat meningkatkan efisiensi

Sejumlah  penelitian  telah  dilakukan  untuk
meningkatkan akurasi deteksi spoofing. Face-Fake-Net,
misalnya, mencapai akurasi 99,7% pada CASIA-SURF
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inferensi pada perangkat terbatas [6]. Namun, pada
perangkat dengan sumber daya yang lebih terbatas,
pendekatan tradisional yang tidak dioptimalkan masih
jauh dari real-time. Selain itu, model CNN konvensional
cenderung sensitif terhadap perubahan pencahayaan,
artefak visual, dan domain shift, sehingga performanya
menurun ketika diuji pada dataset atau kondisi yang
berbeda dari data pelatihan [7], [8]. Pendekatan berbasis
video-level yang memanfaatkan isyarat temporal seperti
gerakan bibir sering kali memiliki kompleksitas
komputasi yang tinggi [9].

Perkembangan arsitektur YOLOv8 menghadirkan
detektor anchor-free yang lebih efisien, cepat, dan akurat
dibandingkan generasi sebelumnya [10] - [14]. Dari
berbagai variannya, YOLOv8n merupakan model paling
ringan sehingga ideal untuk implementasi real-time pada
perangkat dengan keterbatasan komputasi. Di sisi lain,
metode Eye Aspect Ratio (EAR) menawarkan
pendekatan liveness yang sederhana dan praktis dengan
memanfaatkan sinyal fisiologis berupa kedipan mata,
tanpa memerlukan sensor tambahan.

Namun, penelitian sebelumnya umumnya masih
berfokus pada arsitektur YOLO generasi terdahulu
(misalnya YOLOvV3-YOLOv5) atau pada skenario
single-modal yang tidak terintegrasi dengan verifikasi
liveness berbasis kedipan. Selain itu, pemanfaatan
YOLOv8n secara khusus untuk Face Anti-Spoofing
masih sangat terbatas, terutama dalam konteks deteksi
multi-kategori yang digabungkan dengan liveness
berbasis EAR pada lingkungan real-time berbasis web.
Dengan demikian, terdapat gap penelitian dalam
pengembangan sistem FAS yang mengombinasikan
detektor objek ringan seperti YOLOv8n dengan metode
liveness sederhana berbasis EAR untuk kebutuhan
autentikasi wajah modern di aplikasi web.

Selain aspek keamanan, kebutuhan aksesibilitas juga
menjadi pertimbangan penting. Individu dengan
keterbatasan  fisik tertentu tidak selalu dapat
memanfaatkan biometrik lain seperti sidik jari atau
suara. Dalam kasus tersebut, autentikasi berbasis wajah
sering menjadi pilihan yang paling realistis.

Penelitian ini bertujuan mengevaluasi performa
YOLOvV8Nn dalam mendeteksi empat kategori spoofing
menggunakan dataset besar dan beragam, sekaligus
membandingkan dua strategi pelatihan yaitu pretrained
dan dari awal. Selain itu, penelitian ini mengintegrasikan
YOLOvV8n dengan metode liveness berbasis EAR untuk
menghasilkan sistem anti-spoofing real-time berbasis
web yang tidak memerlukan sensor khusus. Penelitian
ini diharapkan dapat menghadirkan solusi anti-spoofing
yang adaptif, praktis, dan sesuai dengan kebutuhan
autentikasi wajah modern.

DOl : https://doi.org/10.52158/jacost.v6i2.1362

2. Metode Penelitian
2.1. Alur Penelitian

Penelitian ini dilaksanakan melalui beberapa tahapan
sistematis yang dirancang untuk mengembangkan dan
mengevaluasi sistem Face Anti-Spoofing berbasis
YOLOvV8Nn dengan deteksi liveness menggunakan Eye
Aspect Ratio (EAR). Tahap awal meliputi studi literatur,
pengumpulan dataset, dan praproses data. Tahap
berikutnya adalah perancangan desain eksperimen dan
skenario pelatihan, dilanjutkan dengan pelatihan model
dan evaluasi performa deteksi spoofing. Setelah itu,
dilakukan evaluasi liveness berbasis EAR dan integrasi
keduanya ke dalam sistem berbasis web yang
menggabungkan komponen frontend dan backend.
Seluruh tahapan dirancang agar sistem yang dihasilkan
ringan, efisien, dan mampu berjalan secara real-time
melalui  browser. Alur keseluruhan penelitian
ditunjukkan pada Gambar 1.
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Gambar 1. Alur Penelitian
2.2. YOLOv8

YOLO (You Only Look Once) merupakan algoritma
deep learning untuk melakukan deteksi objek secara real
time dengan memanfaatkan algoritma Convolutional
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Neural Network (CNN) [15]. YOLOv8 mengadopsi
pendekatan anchor-free, yang menggantikan sistem
anchor boxes pada versi sebelumnya, sehingga
menyederhanakan proses deteksi dan mengurangi
kompleksitas komputasi.

Avrsitektur YOLOVS terdiri dari tiga komponen utama,
yaitu Backbone untuk ekstraksi fitur menggunakan blok
C2f, Neck untuk penggabungan fitur multi-skala melalui
SPPF dan upsampling, serta Head yang menghasilkan
prediksi bounding box dan klasifikasi objek. YOLOv8
hadir dalam beberapa varian, di mana YOLOv8n
merupakan model paling ringan dengan jumlah
parameter paling kecil, sehingga cocok untuk kebutuhan
inferensi cepat di perangkat dengan daya komputasi
terbatas.

Penggunaan YOLOvV8n pada penelitian ini didasarkan
pada efisiensinya dalam memproses citra secara real-
time serta peningkatan akurasi dan stabilitas yang telah
dilaporkan dibandingkan YOLO generasi sebelumnya.
Sifatnya yang ringan menjadikannya sesuai untuk
diintegrasikan dalam sistem anti-spoofing berbasis web
yang membutuhkan performa cepat tanpa beban
komputasi tinggi. Perbandingan performa masing-

masing varian dapat dilihat pada Gambar 2 [14].

Gambar 2. Varian YOLOv8
2.3. Facial Landmark

Facial landmark adalah metode lokalisasi titik-titik yang
menonjol pada wajah. Sebelum gambar diolah, gambar
harus dideteksi apakah terdapat wajah [16]. Titik-titik ini
digunakan untuk mengidentifikasi posisi mata sebagai
dasar perhitungan Eye Aspect Ratio (EAR). Penggunaan
facial landmark diperlukan karena EAR bergantung
pada jarak vertikal dan horizontal kelopak mata,
sehingga lokalisasi titik mata yang akurat menjadi
langkah penting dalam proses deteksi kedipan. llustrasi
penyebaran titik-titik landmark wajah dapat dilihat pada
Gambar 3 [17].

'

Gambar 3. Lokasi 68 Titik Landmark Wajah
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2.4. Eye Aspect Ratio (EAR)

Eye Aspect Ratio (EAR) adalah nilai skalar yang
digunakan untuk membedakan kondisi mata terbuka dan
tertutup berdasarkan perubahan jarak vertikal dan
horizontal kelopak mata [18]. Nilai EAR cenderung
stabil ketika mata terbuka dan menurun signifikan ketika
mata tertutup, sehingga indikator ini efektif untuk
mendeteksi kedipan secara real-time. EAR dihitung
menggunakan enam titik landmark pada area mata,
seperti ditunjukkan pada Persamaan 1.

||IP2—Pé6||+||P3-P5]|

EAR =
2 ||P1-P4||

1)
Titik P1-P4 menggambarkan jarak horizontal mata,
sedangkan P2-P6 dan P3-P5 mewakili perubahan
vertikal kelopak mata. llustrasi struktur titik-titik
tersebut ditampilkan pada Gambar 4 [19].
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Gambar 4. Eye Aspect Ratio

EAR kemudian dibandingkan dengan beberapa nilai
ambang (threshold) untuk menentukan kondisi mata.
Evaluasi performa liveness detection dilakukan
menggunakan tiga metrik utama sebagaimana pada
Persamaan 2-4: Accuracy, False Acceptance Rate
(FAR), dan False Rejection Rate (FRR).

TP+TN

Akurasi = ——— 2
TP+TN+FP+FN
FAR = £ ®)
FP+TN
FRR = X (4)
FN+TP

Accuracy mengukur tingkat keseluruhan prediksi yang
benar. FAR (False Acceptance Rate) menunjukkan
seberapa sering mata tertutup salah diklasifikasikan
sebagai terbuka, sedangkan FRR (False Rejection Rate)
menunjukkan seberapa sering mata terbuka salah
diklasifikasikan sebagai tertutup. Ketiga metrik tersebut
digunakan untuk menentukan threshold EAR yang
paling stabil dan akurat pada skenario real-time.

2.5. Frontend

Frontend berfungsi sebagai antarmuka utama yang
menangani pengambilan video dari kamera perangkat
menggunakan APl getUserMedia dan menampilkan
hasil deteksi secara real-time. Frame video yang diambil
dikonversi ke format Base64 dan dikirim ke backend
melalui permintaan HTTP POST secara asynchronous
agar proses deteksi tidak mengganggu tampilan video.

HTML, CSS, dan JavaScript digunakan Kkarena
kompatibel dengan seluruh browser modern serta
mendukung integrasi langsung dengan kamera.
JavaScript mengatur pengiriman frame, menampilkan
bounding box dan label klasifikasi, serta memperbarui
status liveness berdasarkan respons JSON dari backend.
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Desain ini memastikan frontend tetap ringan dan
responsif pada berbagai perangkat.

Melalui desain antarmuka yang sederhana dan interaktif,
frontend memungkinkan pengguna melihat hasil deteksi
spoofing dan kedipan mata secara real-time. Dengan
demikian, frontend tidak hanya berperan sebagai
tampilan visual, tetapi juga sebagai komponen penting
dalam memastikan alur autentikasi berjalan cepat dan
konsisten pada aplikasi berbasis web.

2.6. Backend

Backend berfungsi sebagai pusat pemrosesan utama
yang menjalankan inferensi deteksi spoofing dan
liveness. Setiap frame yang dikirimkan dari frontend
diterima melalui endpoint REST API, kemudian melalui
proses prapemrosesan sebelum diolah oleh model
YOLOv8n. Model menghasilkan deteksi wajah beserta
kategorinya, yaitu real, printed, digital, atau mask. Jika
wajah terdeteksi sebagai “real”, backend mengekstraksi
titik facial landmark pada area mata dan menghitung Eye
Aspect Ratio (EAR) untuk menilai kondisi kedipan
sebagai verifikasi liveness.

Backend dikembangkan menggunakan framework Flask
karena sifatnya yang ringan, fleksibel, dan efisien untuk
memenuhi kebutuhan inferensi real-time pada aplikasi
web. Flask memungkinkan pengaturan routing yang
sederhana, integrasi pustaka deep learning berbasis
Python, serta latensi rendah dalam pemrosesan citra.
Seluruh proses inferensi dilakukan di sisi server untuk
menjaga keamanan model dan memastikan performa
konsisten pada berbagai perangkat pengguna.

Backend mengirimkan hasil deteksi kepada frontend
dalam bentuk respons JSON yang memuat label
klasifikasi, nilai confidence, dan status kedipan mata.
Dengan demikian, backend berperan penting dalam
memastikan alur autentikasi berjalan cepat, akurat, dan
stabil pada sistem anti-spoofing berbasis web.

2.7. Dataset and Preprocessing

Dataset dalam penelitian ini terdiri dari 400.800 citra
dan 18 video yang mencakup empat kategori spoofing,
yaitu real, printed, digital, dan mask. Seluruh citra
diperoleh dari kombinasi dataset terbuka seperti
CelebA-Spoof, iBeta, dan beberapa dataset Kaggle [20]-
[39] yang menyediakan keragaman etnis, kondisi
pencahayaan, pose wajah, serta variasi teknik serangan.
Selain itu, data video direkam secara mandiri untuk
menyediakan sampel kedipan yang diperlukan dalam
evaluasi liveness berbasis EAR. Keberagaman ini
memastikan bahwa model dapat belajar dan melakukan
generalisasi pada berbagai kondisi autentikasi di dunia
nyata.

Tahap preprocessing dilakukan untuk memastikan
kualitas dan konsistensi data yang masuk ke model
YOLOv8n. Wajah terlebih dahulu diekstraksi dari setiap
frame menggunakan OpenCV dan modul deteksi wajah.
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Citra kemudian dipotong dengan margin tertentu untuk
mempertahankan fitur penting pada area wajah. Deteksi
blur dilakukan menggunakan metode variansi Laplacian
untuk menghapus citra yang tidak fokus. Setiap citra
yang lolos seleksi diberi anotasi dalam format YOLO,
termasuk class ID dan koordinat bounding box yang ter-
normalisasi. Contoh proses deteksi wajah ditampilkan
pada Gambar 5.

>

.

Gambar 5. Proses Deteksi Wajah

Dataset dibagi menjadi tiga subset, yaitu 70% untuk
pelatihan, 10% untuk validasi, dan 20% untuk
pengujian. Pembagian ini dilakukan secara proporsional
pada setiap kategori spoofing untuk mencegah bias kelas
dan memastikan evaluasi model lebih representatif.
Struktur dataset difinalisasi dalam berkas konfigurasi
YAML agar dapat langsung terintegrasi dengan pipeline
pelatihan YOLOvS8n.

Secara keseluruhan, proses preprocessing dirancang
untuk menghasilkan data yang bersih, terstruktur, dan
konsisten sehingga model dapat belajar pola spoofing
secara efektif serta mempertahankan performa yang
stabil pada tahap pengujian.

2.8. Desain Eksperimen

Desain eksperimen penelitian ini mencakup dua
komponen utama, vyaitu evaluasi deteksi spoofing
menggunakan YOLOv8n dan evaluasi liveness
detection berbasis Eye Aspect Ratio (EAR). Seluruh
konfigurasi  pelatihan dan pemilihan parameter
ditetapkan berdasarkan pertimbangan teknis serta acuan
penelitian terdahulu.

Pada deteksi spoofing, dua skenario pelatihan
digunakan: fine-tuning pretrained weights dan training
from scratch. Pendekatan pretrained dipilih untuk
memperoleh konvergensi yang lebih cepat dan stabil
karena model telah memiliki representasi awal dari
dataset COCO. Sebaliknya, pelatihan dari awal
digunakan untuk  menilai kemampuan  model
mempelajari pola spoofing secara murni tanpa bias dari
dataset umum. Perbandingan kedua skenario ini
digunakan untuk mengetahui efektivitas transfer
learning terhadap performa akhir model.

Parameter pelatihan ditetapkan agar seimbang antara
akurasi dan efisiensi. Resolusi input 640x640 digunakan
karena merupakan konfigurasi default YOLOV8 yang
efektif pada varian ringan. Pelatihan dilakukan selama
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100 epoch berdasarkan hasil percobaan awal yang
menunjukkan konvergensi pada rentang epoch 70-90,
sedangkan batch size 16 dipilih untuk menjaga stabilitas
pembaruan bobot pada GPU RTX 3060. Pemilihan
varian YOLOv8n didasarkan pada jumlah parameternya
yang kecil sehingga mampu mendukung inferensi real-
time pada sistem berbasis web.

Evaluasi model dilakukan menggunakan metrik
Precision, Recall, mAP50, dan mAP50-95 untuk
menggambarkan kualitas deteksi pada berbagai tingkat
akurasi bounding box. Selain evaluasi berbasis dataset,
model juga diuji secara real-time menggunakan kamera
untuk  menilai  ketahanannya terhadap variasi
pencahayaan, pose, dan aksesori wajah

Komponen liveness detection diuji menggunakan empat
nilai threshold EAR, yaitu 0.15, 0.17, 0.20, dan 0.25.
Rentang threshold ini dipilih berdasarkan temuan
penelitian terdahulu [18], [40], yang menunjukkan
bahwa nilai EAR mata terbuka umumnya berada pada
rentang 0.20-0.30, sedangkan EAR mata tertutup berada
di bawah 0.18. Setiap threshold diuji menggunakan
metrik Accuracy, False Acceptance Rate (FAR), dan
False Rejection Rate (FRR) untuk menentukan ambang
yang paling stabil dalam membedakan kondisi mata
pada penggunaan real-time.

Secara keseluruhan, desain eksperimen ini memastikan
bahwa kedua komponen, yaitu deteksi spoofing dan
liveness detection, diuji secara sistematis dan berbasis
justifikasi ilmiah sehingga valid untuk implementasi
sistem anti-spoofing berbasis web.

3. Hasil dan Pembahasan
3.1. Pelatihan Model YOLOv8n

Pelatihan dilakukan menggunakan dua skenario, yaitu
fine-tuning bobot pre-trained COCO dan pelatihan dari
awal tanpa bobot awal. Kurva hasil pelatihan model
dengan pre-trained dapat dilihat pada Gambar 6 dan
Gambar 7.

trainfoox_loss tranycls loss
1013 Cacs -~ - g v L9

o)

tran/cfl_joss

100 o w0

Gambar 6. Kurva Loss Pelatihan Model YOLOv8n Pre-trained

100 o 0 100
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Gambar 6 menyajikan kurva loss hasil pelatihan model
YOLOv8n dengan bobot pre-trained, yang terdiri dari
box_loss, cls_loss, dan dfl_loss pada data pelatihan dan
validasi. Kurva-kurva tersebut menunjukkan penurunan
tajam pada 10-15 epoch pertama sebelum mendatar
pada nilai yang rendah hingga epoch ke-100. Jarak
antara loss pelatihan dan validasi relatif kecil dan tidak
terlihat peningkatan loss yang berkepanjangan pada data
validasi. Pola ini menunjukkan bahwa proses optimisasi
berjalan stabil, model tidak mengalami overfitting yang
signifikan, dan posisi bounding box serta distribusinya
dapat dipelajari dengan baik. Lonjakan kecil pada
val/box_loss dan wval/cls_loss di awal epoch
mencerminkan fase adaptasi terhadap distribusi data
spoofing yang lebih beragam dibandingkan COCO,
namun setelah itu kurva cepat turun dan stabil pada nilai
yang konsisten.

rami/box_loss

rain/ors foss Urainddl_loss

Gambar 7. Kurva Loss Pelatihan Model YOLOv8n Tanpa Pre-trained

Gambar 7 menampilkan kurva loss untuk box_loss,
cls_loss, dan dfl_loss pada data pelatihan dan validasi.
Secara umum, bentuk kurva mirip dengan model pre-
trained, tetapi fase penurunan awal berlangsung sedikit
lebih lama. Hal ini wajar karena model tidak membawa
pengetahuan awal dari COCO dan harus membangun
representasi fitur dari nol. Meskipun demikian, loss pada
data pelatihan dan validasi tetap turun hingga mencapai
nilai rendah yang stabil, dengan gap yang kecil di antara
keduanya. Pola ini menunjukkan bahwa arsitektur
YOLOv8n yang anchor-free dengan blok C2f dan modul
SPPF mampu memfasilitasi pembelajaran fitur secara
efisien bahkan tanpa bobot awal, selama didukung oleh
dataset yang cukup besar dan beragam.

Rata-rata mAP50 pada Tabel 1 mencapai 99,5% baik
pada data pelatihan maupun pengujian, sedangkan
mAP50-95 berada di kisaran 91,2% untuk pelatihan dan
90,4% untuk pengujian. Kelas real menunjukkan kinerja
terbaik dengan mMAP50-95 sekitar 95-96%, yang
mengindikasikan bahwa pola tekstur dan kontur wajah
manusia asli relatif konsisten dan mudah dipelajari oleh
model. Sebaliknya, kelas digital mencatat mAP50-95
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terendah, yaitu sekitar 88-89%. Perbedaan ini dapat
dijelaskan oleh karakteristik tampilan layar yang sering
memunculkan artefak visual seperti pantulan cahaya,
pola moiré, dan variasi brightness yang ekstrem. Artefak
tersebut cenderung mengganggu pola gradien dan
kontur tepi wajah sehingga batas objek pada layar
menjadi kurang jelas, membuat detektor berbasis
bounding box seperti YOLOvV8n lebih sulit memetakan
objek dengan presisi tinggi.

Tabel 1. Hasil Pelatihan Model YOLOv8n Pre-trained Model

mapso  MAPSO- Aps0 mAPSO-

Kelas Train 95. Test 95 Test

Train

real 99,5% 96,2% 99,5% 95,8%
printed 99,4% 89,0% 99,4% 88,1%
digital 99,5% 88,5% 99,4% 87,4%
mask 99,5% 91,1% 99,5% 90,0%
Rata-rata ____ 99,5% 91,2% 99,4% 90,4%

Tabel 2 merangkum hasil pelatihan untuk skenario tanpa
bobot pre-trained. Rata-rata mAP50 yang diperoleh
sebesar 99,4% baik pada data pelatihan maupun
pengujian, sedangkan mAP50-95 berada di kisaran
90,8% untuk pelatihan dan 90,1% untuk pengujian.
Nilai-nilai ini hanya sedikit lebih rendah dibandingkan
model pre-trained dan tetap menunjukkan ketelitian
spasial yang tinggi dalam memprediksi posisi dan
ukuran wajah. Pola per kelas juga konsisten dengan
skenario pre-trained: kelas real kembali mencatat
mAP50-95 tertinggi sekitar 95-96%, sedangkan kelas
digital menjadi yang terendah sekitar 87-88%.
Konsistensi tren ini menguatkan dugaan bahwa
tantangan utama pada kelas digital berasal dari
karakteristik intrinsik media tampilan, bukan dari
perbedaan strategi pelatihan. Selain itu, kedekatan nilai
MAP antara data pelatihan dan pengujian pada kedua
skenario menunjukkan bahwa model mampu melakukan
generalisasi dengan baik dan tidak terjebak pada
overfitting yang berat.

Tabel 2. Hasil Pelatihan Model YOLOv8n Tanpa Pre-trained Model

mAP50-

MAP50 mAP50  mAP50-
Kelas Train 95. Test 95 Test
Train
real 99,5% 96,0% 99,5% 95,7%
printed 99,3% 88,6% 99,3% 87,7%
digital 99,4% 87,9% 99,4% 87,1%
mask 99,5% 90,6% 99,5% 89,8%
Rata-rata 99,4% 90,8% 99,4% 90,1%
Secara keseluruhan, hasil pada pelatihan model

menunjukkan bahwa kedua skenario pelatihan
menghasilkan performa yang sangat tinggi dan stabil.
Penggunaan bobot pre-trained memberikan keuntungan
utama berupa konvergensi yang lebih cepat, tetapi
perbedaan mAP50 dan mAP50-95 akhir antara kedua
model relatif kecil. Perbedaan kinerja antar kelas lebih
banyak dipengaruhi oleh sifat tekstur dan artefak visual
masing-masing kategori, khususnya pada kelas digital
yang dipengaruhi pantulan dan pola layar, dibandingkan
oleh konfigurasi pelatihan. Temuan ini mengindikasikan
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bahwa YOLOv8n memiliki kapasitas representasi yang
memadai untuk tugas face anti-spoofing multi-kategori
dan layak dijadikan basis untuk analisis evaluasi model
dan perbandingan dengan studi terdahulu pada subbab
berikutnya.

3.2. Evaluasi Model

Evaluasi dilakukan pada dua model YOLOv8n—pre-
trained dan from-scratch—menggunakan 40.080 citra
data uji (10% dari total dataset) yang mencakup empat
kategori spoofing: real, printed, digital, dan mask.
Penilaian performa dilakukan menggunakan precision,
recall, mAP50, dan mAP50-95 untuk menilai
kemampuan klasifikasi model.

Gambar 8 menampilkan evolusi metrik precision, recall,
mMAP50, dan mAP50-95 selama pelatihan untuk model
dengan bobot pre-trained. Kurva pada Gambar 8
menunjukkan bahwa seluruh metrik naik sangat cepat
pada awal pelatihan dan kemudian berada pada plateau
tinggi hingga epoch ke-100. Precision dan recall
mendekati nilai 1,0, menandakan bahwa jumlah false
positive dan false negative sangat kecil. Nilai mAP50
mencapai level tinggi sejak awal, sedangkan mAP50-95
meningkat lebih bertahap sebelum stabil di kisaran 0,90.
Pola ini konsisten dengan teori transfer learning, di mana
bobot COCO menyediakan fitur generik yang kuat

sehingga model hanya perlu menyesuaikan ke
karakteristik spoofing wajah.
metrics/precision(B) metrics/recall(B)
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Gambar 8. Hasil Evaluasi Pelatihan Model YOLOv8n Pre-trained

Gambar 9 menyajikan metrik yang sama untuk model
yang dilatih tanpa bobot pre-trained. Bentuk kurva pada
Gambar 9 mirip dengan Gambar 7, tetapi fase kenaikan
awal sedikit lebih panjang. Precision dan recall baru
benar-benar stabil mendekati 0,99 setelah sekitar dua
puluh epoch, sementara mAP50-95 membutuhkan
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beberapa epoch tambahan sebelum mencapai nilai
mendekati 0,90. Perbedaan pola ini menunjukkan bahwa
model from-scratch membutuhkan waktu lebih lama
untuk membangun representasi fitur, tetapi pada
akhirnya mampu menyamai kualitas model pre-trained
karena terbantu oleh ukuran dan keragaman dataset.

metrics/precision(B) metrics/recall(B)

1.0 A 1.0 1 (.-—_-_-
0.8 By 0.81 1
0.6 1 0.6 1
0.4 4
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Gambar 9. Hasil Evaluasi Pelatihan Model YOLOv8n Tanpa Pre-
trained

Hasil evaluasi pada data validasi untuk model pre-
trained ditampilkan pada Tabel 3. Tabel 3 menyajikan
nilai precision, recall, mAP50, dan mAP50-95 per kelas.
Nilai rata-rata precision mencapai 99,5% dan recall
98,6%, dengan mAP50 sebesar 99,4% dan mAP50-95
sebesar 90,4%. Kelas real memiliki kombinasi nilai
tertinggi, yaitu precision dan recall 99,9% serta mAP50—
95 sekitar 95,9%. Hal ini menunjukkan bahwa pola
tekstur dan kontur wajah asli relatif konsisten dan mudah
dipisahkan dari serangan spoofing. Kelas mask juga
mencatat performa tinggi dengan mAP50-95 sekitar
90,2%, karena topeng memiliki pola tepi dan tekstur
material yang berbeda dari kulit manusia sehingga lebih
mudah dikenali detector.

Tabel 3. Hasil Evaluasi Model YOLOv8n Dengan Pre-trained Model

Kelas Precision Recall mAP50 mgl;SO-
real 99,9% 99,9% 99,5% 95,9%
printed 98,7% 98,4% 99,4% 87,9%
digital 99,5% 97,6% 99,4% 87,6%
mask 99,8% 98,6% 99,5% 90,2%
Rata-rata 99,5% 98,6% 99,4% 90,4%
Tabel 4 menyajikan hasil evaluasi untuk model

YOLOvVS8N yang dilatih tanpa bobot pre-trained. Secara
rata-rata, precision sebesar 99,2% dan recall 98,7%,
sedangkan mAP50 dan mAP50-95 masing-masing

DOl : https://doi.org/10.52158/jacost.v6i2.1362

berada pada 99,4% dan 90,4%. Performa rata-rata ini
hampir identik dengan model pre-trained. Kelas real
kembali menjadi yang paling tinggi dengan mAP50-95
sekitar 95,7%, sementara kelas digital kembali menjadi
yang terendah dengan mAP50-95 sekitar 87,3-87,7%.
Konsistensi pola ini menunjukkan bahwa perbedaan
utama antar kelas lebih ditentukan oleh karakteristik
visual tiap kategori, bukan oleh skenario pelatihan yang
digunakan.

Tabel 4. Hasil Evaluasi Model YOLOv8n Tanpa Pre-trained Model

Kelas Precision Recall mAP50 mA9P550—
real 99,8% 99,8% 99,5% 95,7%
printed 98,1% 98,5% 99,3% 87,7%
digital 99,2% 97,9% 99,4% 87,3%
mask 99,7% 98,7% 99,5% 90,0%
Rata-rata 99,2% 98,7% 99,4% 90,4%

Performa kelas digital yang secara konsisten sedikit
lebih rendah dibanding kelas lain dapat dijelaskan dari
sisi karakteristik data. Wajah digital direkam dari
tampilan layar ponsel atau monitor yang menghasilkan
berbagai artefak, seperti pantulan cahaya, pola moiré
akibat interaksi piksel layar dengan sensor kamera, serta
variasi brightness yang ekstrem. Artefak ini membuat
batas kontur wajah dan gradasi tekstur kulit menjadi
kurang jelas dibanding wajah asli atau printed, sehingga
prediksi bounding box dan klasifikasi menjadi sedikit
lebih sulit. Selain itu, beberapa sampel digital memiliki
resolusi efektif lebih rendah dibanding kelas lainnya,
karena wajah yang ditampilkan di layar sering hanya
menempati sebagian kecil area frame. Kondisi ini secara
teoritis menurunkan rasio signal-to-noise fitur lokal
yang dibutuhkan oleh head deteksi YOLOv8n.

Tabel 5 menunjukkan bahwa model YOLOv8n dalam
penelitian ini mencapai recall yang lebih tinggi dan
precision yang sebanding dengan hasil YOLOv3-
YOLOV5 pada penelitian Vardhan et al. (2025). Pada
model pre-trained, nilai precision berada pada tingkat
yang sama dengan Vardhan, namun recall meningkat
cukup signifikan, mengindikasikan kemampuan deteksi
spoof yang lebih baik. Sementara itu, model from-
scratch menghasilkan precision yang sedikit lebih
rendah, tetapi tetap memberikan recall yang lebih tinggi.
Perbaikan recall ini sangat relevan dalam konteks anti-
spoofing, karena recall yang tinggi membantu
meminimalkan kelolosan serangan.

Tabel 5. Perbandingan Kinerja Model Penelitian Ini dengan R.
Vishnu Sai Vardhan dkk. (2025)

Model/Studi Precision Recall
Proposed YOLOvV8n . ,
(Pre-trained) 99,5% 98,6%
Proposed YOLOvV8n . ,
(From Scratch) 99,2% 98,7%
YOLOV3-YOLOvV5 99.5% o7 6%

(Vardhan et al., 2025)
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Kemampuan model dalam skenario penggunaan nyata Pengujian dilakukan terhadap 10 partisipan dengan
dievaluasi melalui pengujian real-time berbasis kamera, karakteristik yang beragam (jenis kelamin, etnis, dan

yang hasil visualnya dirangkum pada Tabel 6.
Tabel 6. Hasil Pengujian Model YOLOv8n

Printed Digital

Mask

L, & .
uL ‘ 7
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kondisi pencahayaan berbeda). Meskipun jumlah
partisipan relatif terbatas, uji ini bertujuan untuk
mengevaluasi performa sistem secara praktis pada
kondisi dunia nyata, bukan untuk analisis statistik
populasi. Validasi generalisasi model telah dilakukan
sebelumnya melalui dataset pelatihan yang besar dan
beragam, sehingga jumlah partisipan dianggap memadai
untuk tahap verifikasi sistem real-time.

Tabel 6 menampilkan contoh keluaran sistem untuk
sepuluh partisipan pada empat kondisi, yaitu wajah asli,
printed, digital, dan mask, baik untuk model dengan
maupun tanpa bobot pre-trained. Pada sebagian besar
contoh pada Tabel 6, bounding box dan label kelas yang
dihasilkan sudah konsisten dengan kondisi sebenarnya
dengan confidence di atas 0,8. Rata-rata confidence
untuk kelas real berada di kisaran 94-95%, printed dan
mask sekitar 92-93%, sedangkan digital berkisar 86—
87%. Pola ini sejalan dengan temuan kuantitatif pada
Tabel 3 dan Tabel 4, yaitu bahwa kelas digital
merupakan kasus paling menantang, sementara kelas
real dan mask relatif lebih mudah diidentifikasi.

Selain variasi kondisi wajah dan serangan spoofing,
pengujian juga mencakup variasi pencahayaan,
termasuk kondisi low-light dan pencahayaan tidak
merata. Hasil pengujian menunjukkan bahwa model
YOLOv8n tetap mampu mendeteksi wajah dengan
confidence di atas 90% pada kondisi pencahayaan redup,
sehingga dapat disimpulkan bahwa sistem memiliki
ketahanan yang baik terhadap variasi intensitas cahaya
pada proses autentikasi real-time.

Sistem juga diuji pada partisipan yang menggunakan
kacamata untuk mengetahui pengaruh occlusion
terhadap  performa  deteksi. Hasil  pengujian
menunjukkan bahwa keberadaan kacamata tidak
memberikan dampak signifikan terhadap Kklasifikasi

' wajah, di mana wajah asli tetap terdeteksi sebagai

kategori REAL dengan confidence di atas 93%. Hal ini

2 mengindikasikan bahwa model YOLOv8n mampu

mengekstraksi fitur struktural wajah secara konsisten
meskipun sebagian area mata tertutup oleh kacamata

Selama proses pengujian ditemukan beberapa kasus
kesalahan klasifikasi. Salah satu contohnya adalah
ketika wajah asli yang ditampilkan dalam posisi miring
tidak berhasil dikenali oleh sistem dan memunculkan
prediksi yang tidak tepat. Selain itu, terdapat pula
kondisi di mana wajah palsu, seperti gambar pada media
cetak (printed), justru diklasifikasikan sebagai REAL.
Kesalahan tersebut bersifat sesaat dan tidak terjadi
secara terus-menerus, karena pada frame-frame
berikutnya prediksi model kembali sesuai dengan label
yang seharusnya. Temuan ini menunjukkan bahwa
meskipun model secara umum memberikan hasil yang
baik, tetap terdapat potensi misclassifications yang perlu
diperhatikan, terutama pada kondisi input yang tidak

156


https://doi.org/10.52158/jacost.v6i2.1362

Carmelita Angeline Tanujaya, Nur Fajri Azhar, Bowo Nugroho
Journal of Applied Computer Science and Technology (JACOST) Vol. 6 No. 2 (2025)

ideal atau menyerupai karakteristik wajah asli secara
visual.

Meskipun performa deteksi spoofing dan liveness pada
penelitian ini menunjukkan hasil yang sangat baik,
terdapat beberapa batasan yang perlu diperhatikan untuk
interpretasi dan penerapan di dunia nyata.

Dataset yang digunakan sudah cukup besar dan
beragam, namun tetap berpotensi mengandung bias
tertentu terkait distribusi etnis, variasi perangkat
perekam, dan kondisi pencahayaan yang mungkin belum
sepenuhnya mewakili seluruh populasi pengguna. Selain
itu, penelitian ini belum secara eksplisit mengevaluasi
ketahanan model terhadap serangan berbasis deepfake
yang memanfaatkan manipulasi temporal yang lebih
kompleks, sehingga generalisasi sistem pada kategori
serangan tersebut perlu diuji lebih lanjut. Kinerja pada
perangkat berbeda, khususnya perangkat mobile atau
edge dengan kapasitas komputasi sangat terbatas, juga
berpotensi bervariasi meskipun YOLOv8n dirancang
ringan. Oleh karena itu, pengujian lanjutan pada
berbagai konfigurasi perangkat, kondisi lingkungan, dan
tipe serangan yang lebih modern menjadi langkah
penting untuk memperkuat validitas dan ketangguhan
sistem.

3.3. EAR

Eye Aspect Ratio (EAR) digunakan untuk membedakan
kondisi mata terbuka dan tertutup berdasarkan jarak
vertikal dan horizontal kelopak mata. Dalam setiap
frame, sistem mendeteksi wajah menggunakan
YOLOvV8n, kemudian mengekstrak landmark mata Kiri
dan kanan. Enam titik landmark digunakan untuk
menghitung EAR, sehingga perubahan geometri mata
dapat dilacak secara konsisten. Ketika mata mulai
menutup, jarak vertikal antar kelopak mata menurun
jauh lebih cepat dibanding jarak horizontalnya, sehingga
nilai EAR mengikuti pola penurunan yang signifikan.
Mekanisme ini membuat EAR menjadi indikator
fisiologis yang relevan untuk sistem anti-spoofing
modern.

Pada penelitian ini, 18 video menghasilkan 16.630 frame
yang kemudian diberi  pseudo-label  otomatis
berdasarkan ambang awal EAR sebesar 0,18, mengacu
pada nilai umum yang digunakan dalam literatur deteksi
kedipan [18]. Frame dengan EAR < 0,18 dikategorikan
sebagai mata tertutup, sedangkan nilai > 0,18 ditetapkan
sebagai mata terbuka. Pseudo-label ini digunakan
sebagai acuan evaluasi untuk beberapa variasi threshold
prediksi (0.15, 0.17, 0.20, 0.25). Hasil pengujian
ditampilkan pada Tabel 7.

Tabel 7. Hasil Evaluasi EAR Berdasarkan Variasi Threshold

Threshold Accuracy Precision  Recall FAR FRR
0.15 97,52% 97,42% 100%  40,81% 0%
0.17 99,02% 98,97% 100% 16,11% 0%
0.20 97,87% 100% 97,73% 0% 2,27%
0.25 87,65% 100% 86,85% 0% 13,15%

Hasil pada Tabel 7 menunjukkan bahwa setiap threshold
memberikan karakteristik performa yang berbeda. Pada
threshold 0.15, nilai recall mencapai 100%, tetapi FAR
sangat tinggi (40,81%). Kondisi ini terjadi karena
ambang batas yang terlalu rendah membuat sistem
terlalu sensitif, sehingga penurunan EAR kecil akibat
bayangan, pantulan cahaya, atau perubahan pose
dianggap sebagai kedipan. Akibatnya, banyak mata
terbuka salah terdeteksi sebagai tertutup.

Saat threshold dinaikkan menjadi 0.25, terjadi situasi
sebaliknya. Sistem menjadi lebih ketat sehingga hanya
kedipan dengan penurunan EAR yang jelas yang dapat
dikenali. Meskipun FAR menjadi 0%, FRR naik hingga
13,15%, menunjukkan bahwa sebagian kedipan nyata
tidak terdeteksi. Hal ini dapat disebabkan oleh variasi
fisiologis kedipan pengguna, misalnya sebagian orang
memiliki kedipan yang lebih kecil atau tidak menutup
mata secara penuh.

Threshold 0.20 menunjukkan kinerja yang lebih
seimbang, ditandai dengan FAR dan FRR yang rendah.
Namun, recall menurun menjadi 97,73%, yang berarti
sebagian kecil kedipan masih terlewat. Sementara itu,
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threshold 0.17 memberikan performa paling stabil dan
konsisten di semua metrik, ditunjukkan oleh accuracy
tertinggi sebesar 99,02%, precision sebesar 98,97%,
recall tetap sempurna pada 100%, serta FAR yang jauh
lebih rendah dibandingkan threshold 0.15. FRR juga
berada pada nilai 0%, sehingga tidak ada kedipan asli
yang diabaikan oleh sistem.

Secara matematis, pemilihan threshold 0.17 dapat
dijustifikasi dari pola distribusi EAR. Nilai EAR untuk
mata terbuka pada sebagian besar pengguna berada pada
kisaran 0.20-0.30, sedangkan nilai EAR untuk mata
tertutup biasanya berada di bawah 0.18. Dengan
meletakkan threshold pada 0.17, sistem berada tepat
pada area pemisah antara dua distribusi tersebut
sehingga tumpang tindih (overlap) menjadi minimal.
Pemisahan ini mengurangi peluang kedua kelas saling
salah diklasifikasikan. Hasil tersebut menunjukkan
bahwa threshold 0.17 merupakan titik optimal yang
meminimalkan trade-off sensitivitas (recall) dan
ketelitian (precision), sekaligus menjaga stabilitas
deteksi pada kondisi nyata yang dipengaruhi noise
kamera dan variasi fisiologi pengguna.
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3.4. Pembangunan Sistem Berbasis Web

Pembangunan Sistem Anti-Spoofing berbasis web
berfungsi untuk melakukan autentikasi pengguna secara
real-time dengan mendeteksi keberadaan manusia serta
memastikan adanya kedipan mata sebagai indikator
liveness. Sistem dibangun menggunakan pendekatan
client-server, di mana pengguna akan mengakses
antarmuka berbasis web melalui perangkat dengan
kamera yang terintegrasi. Kamera akan menangkap citra
wajah secara langsung yang kemudian dikirimkan ke
sistem informasi untuk diproses. Proses deteksi pertama
menggunakan model YOLOVS8n, yang bertujuan untuk
mengidentifikasi apakah wajah yang tertangkap
merupakan manusia asli atau objek palsu seperti gambar
cetak, tampilan digital, atau topeng. Setelah wajah
dikategorikan sebagai asli, sistem melanjutkan ke proses
kedua yaitu pendeteksian kedipan mata menggunakan
metode facial landmark dari Dlib dan perhitungan Eye
Aspect Ratio (EAR) untuk menentukan liveness
pengguna. Alur proses ini dapat dilihat pada Gambar 10
yang menggambarkan infrastruktur sistem secara

keseluruhan.
/4 \
“l—‘ I .|./I.
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Gambar 10. Infrastruktur Sistem

Gambar 10 menggambarkan bahwa proses dimulai
ketika pengguna memberikan izin akses kamera melalui
browser. Frame video dikirimkan secara berkala menuju
server melalui koneksi HTTP. Server kemudian
menjalankan tahap deteksi pertama menggunakan model
YOLOvV8n untuk menentukan apakah objek pada frame
merupakan wajah dan mengklasifikasikannya ke dalam
kategori real, printed, digital, atau mask. Hanya wajah
yang terdeteksi sebagai real yang diteruskan ke tahap
liveness detection. Desain dua tahap ini diterapkan untuk
mengurangi beban komputasi pada proses EAR karena
sistem tidak perlu menghitung landmark mata apabila
wajah sebelumnya telah diklasifikasikan sebagai
spoofing pada tahap YOLOv8n. Mekanisme interaksi
antara pengguna dan server ditunjukkan pada Gambar
11.

Gambar 11 menunjukkan mekanisme sistem yang
terbagi menjadi dua yakni, sisi pengguna (client) dan
server (backend). Alur proses dimulai dari pengguna
yang mengakses sistem melalui browser. Setelah
halaman dimuat, sistem akan secara otomatis meminta
izin untuk mengakses kamera pada perangkat pengguna.
Jika izin diberikan, maka webcam akan diinisialisasi
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untuk mulai menangkap video secara langsung. Sistem
informasi pada sisi frontend akan melakukan proses
ekstraksi frame dari video, kemudian mengirimkan
frame tersebut ke server menggunakan protokol HTTP.
Setelah frame diterima oleh server, proses dilanjutkan
dengan tahapan deteksi manusia menggunakan model
YOLOv8n. Model ini akan memproses frame untuk
mendeteksi wajah dan mengklasifikasikan apakah wajah
tersebut tergolong real (asli) atau termasuk dalam
kategori spoofing seperti printed, digital, atau mask. Jika
hasil klasifikasi menunjukkan bahwa wajah merupakan
wajah asli, sistem akan melanjutkan proses ke tahap
deteksi liveness melalui analisis kedipan mata.

Pengguna Server
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Gambar 11. Mekanisme Sistem

Tahap deteksi kedipan dilakukan menggunakan pustaka
dlib untuk mengekstraksi 68 titik landmark wajah,
khususnya pada area mata. Berdasarkan titik- titik
tersebut, sistem menghitung nilai Eye Aspect Ratio
(EAR) untuk setiap mata. Jika nilai EAR mengalami
penurunan signifikan dalam waktu singkat, maka
dianggap sebagai kedipan. Apabila kedipan berhasil
terdeteksi, maka sistem akan mengembalikan status
verifikasi sebagai berhasil, menandakan bahwa
pengguna adalah manusia asli yang hidup. Sebaliknya,
jika tidak ditemukan kedipan, atau wajah dikategorikan
sebagai palsu, maka status verifikasi ditolak. Proses ini
berlangsung secara cepat dan efisien karena hanya
menganalisis wajah yang telah dinyatakan valid oleh
YOLOv8n.

Gambar 12 menunjukkan halaman sistem web
pendeteksian yang dapat menampilkan hasil dari proses
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autentikasi  secara  real-time.  Antarmuka  ini
menampilkan area video yang menayangkan citra
langsung baik dari kamera internal atau eksternal
pengguna. Terdapat instruksi yang mengarahkan
pengguna untuk memperlihatkan wajah dan melakukan
kedipan mata sebagai bagian dari proses verifikasi.
Sistem akan menjalankan proses pendeteksian secara
otomatis setelah pengguna menekan tombol ‘“Mulai
Verifikasi”.

[ e PSR ——————— Y]

Bt Lane CAMIGHA

Gambar 12. Tampilan Sistem Web

Hasil dari dua proses utama, yaitu pendeteksian manusia
dan pendeteksian kedipan mata, ditampilkan secara
eksplisit melalui indikator teks di bawah video. Label
“Manusia” akan menunjukkan apakah sistem berhasil
mendeteksi bahwa wajah pengguna tergolong sebagai
manusia asli (real), sedangkan label “Kedip” akan
memperlihatkan apakah sistem berhasil mendeteksi
liveness melalui aktivitas kedipan mata. Masing-masing
status disajikan secara visual dalam bentuk simbol
centang (v) atau silang (X) untuk memudahkan
pemahaman pengguna. Apabila kedua indikator
menyatakan deteksi berhasil, maka pengguna dianggap
telah terverifikasi secara sah sebagai manusia hidup

3.5. Pengujian Waktu Pendeteksian Dengan Perangkat
Laptop

Pengujian waktu pendeteksian bertujuan untuk
mengetahui sejauh mana sistem dapat bekerja secara
responsif ketika dijalankan pada perangkat laptop biasa
tanpa dukungan perangkat keras khusus. Dua komponen
utama yang diuji adalah waktu deteksi wajah
menggunakan YOLOv8n dan waktu validasi liveness
menggunakan EAR. Pengujian dilakukan dengan
webcam 720p pada model YOLOv8n pre-trained (100
epoch) dan threshold EAR sebesar 0.17, berdasarkan
hasil evaluasi optimal pada pengujian sebelumnya.

Pengambilan waktu dalam pengujian ini dibagi menjadi
dua tahap terpisah yang mencerminkan alur kerja sistem
secara berurutan. Tahap pertama merupakan proses
deteksi wajah menggunakan model YOLOv8n, di mana
penghitungan waktu dimulai sejak tombol "Mulai
Deteksi" ditekan oleh pengguna, dan dihentikan saat
sistem berhasil mendeteksi wajah serta menampilkan
status klasifikasi real. Setelah status dari YOLOv8n
muncul, sistem secara otomatis masuk ke tahap kedua,
yaitu proses validasi liveness melalui deteksi kedipan
mata menggunakan metode EAR. Pada tahap ini, waktu
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dihitung kembali mulai dari nol detik, dan diakhiri saat
sistem berhasil memverifikasi kedipan mata.

Hasil pengujian dapat dilihat pada Tabel 8 yang
menunjukkan bahwa waktu yang dibutuhkan oleh model
YOLOvV8n untuk mendeteksi wajah berkisar antara 0,45
detik hingga 5,63 detik, dengan rata-rata sekitar 1,65
detik. Sementara itu, waktu yang diperlukan oleh sistem
untuk melakukan validasi kedipan mata menggunakan
metode EAR memiliki rentang yang lebih bervariasi,

* yakni antara 0,46 detik hingga 8,65 detik, dengan rata-

rata sekitar 2,89 detik. Perbedaan ini disebabkan oleh
sifat alami proses deteksi kedipan, yang sangat
tergantung pada interaksi pengguna. Dalam beberapa
kasus, sistem membutuhkan waktu lebih lama untuk
mendeteksi kedipan, terutama jika pengguna tidak
segera melakukan gerakan mata atau berada dalam
posisi yang kurang ideal terhadap kamera.

Waktu total vyang dibutuhkan sistem  untuk
menyelesaikan proses deteksi dan validasi berkisar
antara dua hingga sepuluh detik. Rentang waktu ini
masih dapat dikategorikan sebagai responsif untuk
penggunaan real-time dalam konteks autentikasi
berbasis wajah. Dengan performa tersebut, sistem dapat
diandalkan untuk digunakan dalam aplikasi berbasis
web pada perangkat laptop tanpa memerlukan perangkat
keras tambahan. Hasil ini juga menunjukkan bahwa
kombinasi antara model YOLOv8n dan metode EAR
cukup efektif dalam mendukung proses verifikasi
identitas pengguna dengan mempertimbangkan aspek
keamanan dan kenyamanan.

Tabel 8. Hasil Pengujian Waktu Pendeteksian

Pengujian ke- YOLOV8N (detik) EAR (detik)
1 05.63 03.83
2 01.35 03.28
3 01.59 04.70
4 01.84 03.38
5 01.71 01.83
6 00.45 01.26
7 01.83 01.09
8 01.65 01.73
9 00.64 01.56
10 01.78 01.66

11 01.21 02.66
12 01.66 00.46
13 01.65 01.16
14 01.19 01.21
15 01.16 04.29
16 01.26 06.41
17 01.68 08.65
18 01.96 02.35
19 01.71 01.18
20 01.23 05.15

4. Kesimpulan

Penelitian ini menghasilkan sistem anti-spoofing wajah
real-time yang mengintegrasikan YOLOv8n untuk
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deteksi spoofing empat kelas (real, printed, digital,
mask) serta Eye Aspect Ratio (EAR) untuk verifikasi
liveness melalui kedipan mata. Evaluasi menunjukkan
bahwa kedua strategi pelatihan—baik pretrained
maupun from scratch—memberikan performa tinggi dan
stabil dengan rata-rata precision 99%, recall 98%,
MAP50 99.4%, dan mAP50-95 sekitar 90%. Pengujian
real-time pada berbagai kondisi pencahayaan, variasi
etnis, serta pengguna berkacamata turut mengonfirmasi
ketahanan sistem dengan rata-rata confidence di atas
90%.

Komponen liveness EAR menunjukkan bahwa threshold
0.17 memberikan hasil terbaik dengan akurasi 99.02%,
recall 100%, serta FRR 0%, menandakan keseimbangan
optimal antara sensitivitas dan ketelitian dalam
mendeteksi kedipan mata.

Novelty penelitian ini terletak pada integrasi model
YOLOv8n—yang masih minim eksplorasi dalam
domain face anti-spoofing—dengan  mekanisme
liveness EAR dalam satu pipeline inferensi real-time
berbasis web. Kontribusi ini memberikan solusi yang
ringan, cepat, dan dapat diimplementasikan pada
perangkat dengan sumber daya terbatas, termasuk laptop
dan perangkat mobile.

Secara keseluruhan, hasil penelitian menunjukkan
bahwa kombinasi YOLOv8n dan EAR mampu
menghasilkan sistem anti-spoofing berbasis web yang
ringan dengan inferensi cepat dan performa real-time
yang stabil untuk kebutuhan autentikasi wajah modern.

Sebagai arahan pengembangan selanjutnya, penelitian
ini perlu diperluas melalui pengujian terhadap serangan
berbasis deepfake video, evaluasi pada berbagai model
kamera dan perangkat mobile, serta validasi pada
lingkungan  non-terkontrol ~ untuk  memastikan
ketangguhan sistem pada skenario nyata yang lebih
beragam.
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