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Abstract  

Face spoofing poses a major threat to facial recognition–based authentication systems, especially in web-based environments 

that require lightweight and real-time verification. This study develops a real-time anti-spoofing system that integrates 

YOLOv8n for classifying four facial categories (real, printed, digital, and mask), combined with blink-based liveness 

verification using the Eye Aspect Ratio (EAR). Using 400,800 images and 18 videos, two training strategies—pretrained and 

from scratch—were evaluated. The pretrained model achieved a precision of 99.5%, recall of 98.6%, mAP50 of 99.4%, and 

mAP50–95 of 90.4%, slightly outperforming the from-scratch model. EAR threshold evaluation showed that a value of 0.17 

yielded the best performance with 99.02% accuracy, 100% recall, a FAR of 16.11%, and an FRR of 0%. The proposed 

integration of YOLOv8n and EAR represents a practical novelty for lightweight, web-based anti-spoofing, providing fast 

inference and stable real-time performance suitable for modern facial authentication systems. 
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Abstrak 

Face spoofing merupakan ancaman bagi sistem autentikasi berbasis wajah, terutama pada aplikasi web yang membutuhkan 

proses verifikasi yang ringan dan real-time. Penelitian ini mengembangkan sistem anti-spoofing real-time yang 

mengintegrasikan YOLOv8n untuk mengklasifikasikan empat kategori wajah (real, printed, digital, dan mask) serta verifikasi 

liveness melalui deteksi kedipan berbasis Eye Aspect Ratio (EAR). Dengan menggunakan 400.800 citra dan 18 video, dua 

strategi pelatihan—pretrained dan from scratch—dievaluasi. Model pretrained mencapai precision 99,5%, recall 98,6%, 

mAP50 99,4%, dan mAP50–95 90,4%, sedikit lebih tinggi dibandingkan model from scratch. Evaluasi ambang EAR 

menunjukkan bahwa nilai 0,17 menghasilkan performa terbaik dengan akurasi 99,02%, recall 100%, FAR 16,11%, dan FRR 

0%. Integrasi YOLOv8n dan EAR ini menjadi kontribusi praktis yang menawarkan solusi anti-spoofing berbasis web yang 

ringan dengan inferensi cepat dan performa real-time yang stabil untuk kebutuhan autentikasi wajah modern. 

Kata kunci: Face Recognition, Anti-Spoofing, YOLOv8n, Eye Aspect Ratio, Facial Landmark, Real-Time

1. Pendahuluan  

Teknologi pengenalan wajah banyak digunakan dalam 

sistem keamanan biometrik, seperti pengendalian akses, 

pembayaran digital, dan identifikasi pengguna. Namun, 

meningkatnya penggunaan teknologi ini disertai dengan 

bertambahnya serangan spoofing, di mana penyerang 

memalsukan identitas menggunakan foto, video, atau 

masker sehingga sistem salah mengenali objek palsu 

sebagai wajah asli [1]. Serangan seperti ini berpotensi 

dimanfaatkan untuk tujuan jahat dan dapat 

membahayakan keamanan sistem. Oleh karena itu, Face 

Anti-Spoofing (FAS) menjadi sangat penting untuk 

memastikan bahwa wajah yang dikenali oleh sistem 

benar-benar berasal dari individu secara langsung.  

Sejumlah penelitian telah dilakukan untuk 

meningkatkan akurasi deteksi spoofing. Face-Fake-Net, 

misalnya, mencapai akurasi 99,7% pada CASIA-SURF 

dan 99,4% pada CelebA-Spoof [2]. Pendekatan lain 

yang mengombinasikan Histogram of Oriented 

Gradients (HOG), Support Vector Machine (SVM), dan 

deteksi kedipan mata dilaporkan mampu mencapai 

akurasi 92,68% [3]. Pendekatan berbasis YOLOv3–

YOLOv5 juga menunjukkan hasil yang kompetitif, 

dengan akurasi mencapai 98,2% pada dataset CASIA-

FASD [4]. Di sisi lain, beberapa metode FAS 

memanfaatkan sensor tambahan seperti depth atau NIR 

untuk meningkatkan akurasi, tetapi solusi ini 

membutuhkan perangkat keras khusus yang relatif 

mahal dan kurang praktis untuk aplikasi web maupun 

perangkat edge dengan keterbatasan komputasi [1], [5].  

Performa deteksi pada edge device sangat bervariasi. 

Varian ringan YOLOv3-tiny yang direduksi mencapai 

sekitar 25.9 FPS pada CPU laptop, menunjukkan bahwa 

optimisasi arsitektur dapat meningkatkan efisiensi 
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inferensi pada perangkat terbatas [6]. Namun, pada 

perangkat dengan sumber daya yang lebih terbatas, 

pendekatan tradisional yang tidak dioptimalkan masih 

jauh dari real-time. Selain itu, model CNN konvensional 

cenderung sensitif terhadap perubahan pencahayaan, 

artefak visual, dan domain shift, sehingga performanya 

menurun ketika diuji pada dataset atau kondisi yang 

berbeda dari data pelatihan [7], [8]. Pendekatan berbasis 

video-level yang memanfaatkan isyarat temporal seperti 

gerakan bibir sering kali memiliki kompleksitas 

komputasi yang tinggi [9].  

Perkembangan arsitektur YOLOv8 menghadirkan 

detektor anchor-free yang lebih efisien, cepat, dan akurat 

dibandingkan generasi sebelumnya [10] - [14]. Dari 

berbagai variannya, YOLOv8n merupakan model paling 

ringan sehingga ideal untuk implementasi real-time pada 

perangkat dengan keterbatasan komputasi. Di sisi lain, 

metode Eye Aspect Ratio (EAR) menawarkan 

pendekatan liveness yang sederhana dan praktis dengan 

memanfaatkan sinyal fisiologis berupa kedipan mata, 

tanpa memerlukan sensor tambahan.  

Namun, penelitian sebelumnya umumnya masih 

berfokus pada arsitektur YOLO generasi terdahulu 

(misalnya YOLOv3–YOLOv5) atau pada skenario 

single-modal yang tidak terintegrasi dengan verifikasi 

liveness berbasis kedipan. Selain itu, pemanfaatan 

YOLOv8n secara khusus untuk Face Anti-Spoofing 

masih sangat terbatas, terutama dalam konteks deteksi 

multi-kategori yang digabungkan dengan liveness 

berbasis EAR pada lingkungan real-time berbasis web. 

Dengan demikian, terdapat gap penelitian dalam 

pengembangan sistem FAS yang mengombinasikan 

detektor objek ringan seperti YOLOv8n dengan metode 

liveness sederhana berbasis EAR untuk kebutuhan 

autentikasi wajah modern di aplikasi web.  

Selain aspek keamanan, kebutuhan aksesibilitas juga 

menjadi pertimbangan penting. Individu dengan 

keterbatasan fisik tertentu tidak selalu dapat 

memanfaatkan biometrik lain seperti sidik jari atau 

suara. Dalam kasus tersebut, autentikasi berbasis wajah 

sering menjadi pilihan yang paling realistis.  

Penelitian ini bertujuan mengevaluasi performa 

YOLOv8n dalam mendeteksi empat kategori spoofing 

menggunakan dataset besar dan beragam, sekaligus 

membandingkan dua strategi pelatihan yaitu pretrained 

dan dari awal. Selain itu, penelitian ini mengintegrasikan 

YOLOv8n dengan metode liveness berbasis EAR untuk 

menghasilkan sistem anti-spoofing real-time berbasis 

web yang tidak memerlukan sensor khusus. Penelitian 

ini diharapkan dapat menghadirkan solusi anti-spoofing 

yang adaptif, praktis, dan sesuai dengan kebutuhan 

autentikasi wajah modern.  

2. Metode Penelitian 

2.1. Alur Penelitian 

Penelitian ini dilaksanakan melalui beberapa tahapan 

sistematis yang dirancang untuk mengembangkan dan 

mengevaluasi sistem Face Anti-Spoofing berbasis 

YOLOv8n dengan deteksi liveness menggunakan Eye 

Aspect Ratio (EAR). Tahap awal meliputi studi literatur, 

pengumpulan dataset, dan praproses data. Tahap 

berikutnya adalah perancangan desain eksperimen dan 

skenario pelatihan, dilanjutkan dengan pelatihan model 

dan evaluasi performa deteksi spoofing. Setelah itu, 

dilakukan evaluasi liveness berbasis EAR dan integrasi 

keduanya ke dalam sistem berbasis web yang 

menggabungkan komponen frontend dan backend. 

Seluruh tahapan dirancang agar sistem yang dihasilkan 

ringan, efisien, dan mampu berjalan secara real-time 

melalui browser. Alur keseluruhan penelitian 

ditunjukkan pada Gambar 1. 

 

Gambar 1. Alur Penelitian 

2.2. YOLOv8 

YOLO (You Only Look Once) merupakan algoritma 

deep learning untuk melakukan deteksi objek secara real 

time dengan memanfaatkan algoritma Convolutional 
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Neural Network (CNN) [15]. YOLOv8 mengadopsi 

pendekatan anchor-free, yang menggantikan sistem 

anchor boxes pada versi sebelumnya, sehingga 

menyederhanakan proses deteksi dan mengurangi 

kompleksitas komputasi. 

Arsitektur YOLOv8 terdiri dari tiga komponen utama, 

yaitu Backbone untuk ekstraksi fitur menggunakan blok 

C2f, Neck untuk penggabungan fitur multi-skala melalui 

SPPF dan upsampling, serta Head yang menghasilkan 

prediksi bounding box dan klasifikasi objek. YOLOv8 

hadir dalam beberapa varian, di mana YOLOv8n 

merupakan model paling ringan dengan jumlah 

parameter paling kecil, sehingga cocok untuk kebutuhan 

inferensi cepat di perangkat dengan daya komputasi 

terbatas.  

Penggunaan YOLOv8n pada penelitian ini didasarkan 

pada efisiensinya dalam memproses citra secara real-

time serta peningkatan akurasi dan stabilitas yang telah 

dilaporkan dibandingkan YOLO generasi sebelumnya. 

Sifatnya yang ringan menjadikannya sesuai untuk 

diintegrasikan dalam sistem anti-spoofing berbasis web 

yang membutuhkan performa cepat tanpa beban 

komputasi tinggi. Perbandingan performa masing-

masing varian dapat dilihat pada Gambar 2 [14]. 

 

Gambar 2. Varian YOLOv8 

2.3. Facial Landmark 

Facial landmark adalah metode lokalisasi titik-titik yang 

menonjol pada wajah. Sebelum gambar diolah, gambar 

harus dideteksi apakah terdapat wajah [16]. Titik-titik ini 

digunakan untuk mengidentifikasi posisi mata sebagai 

dasar perhitungan Eye Aspect Ratio (EAR). Penggunaan 

facial landmark diperlukan karena EAR bergantung 

pada jarak vertikal dan horizontal kelopak mata, 

sehingga lokalisasi titik mata yang akurat menjadi 

langkah penting dalam proses deteksi kedipan. Ilustrasi 

penyebaran titik-titik landmark wajah dapat dilihat pada 

Gambar 3 [17]. 

 

Gambar 3. Lokasi 68 Titik Landmark Wajah 

2.4. Eye Aspect Ratio (EAR) 

Eye Aspect Ratio (EAR) adalah nilai skalar yang 

digunakan untuk membedakan kondisi mata terbuka dan 

tertutup berdasarkan perubahan jarak vertikal dan 

horizontal kelopak mata [18]. Nilai EAR cenderung 

stabil ketika mata terbuka dan menurun signifikan ketika 

mata tertutup, sehingga indikator ini efektif untuk 

mendeteksi kedipan secara real-time. EAR dihitung 

menggunakan enam titik landmark pada area mata, 

seperti ditunjukkan pada Persamaan 1.  

𝐸𝐴𝑅 =  
||𝑃2−𝑃6||+||𝑃3−𝑃5||

2 ||𝑃1−𝑃4||
              (1) 

Titik P1–P4 menggambarkan jarak horizontal mata, 

sedangkan P2–P6 dan P3–P5 mewakili perubahan 

vertikal kelopak mata. Ilustrasi struktur titik-titik 

tersebut ditampilkan pada Gambar 4 [19].  

 

Gambar 4. Eye Aspect Ratio 

EAR kemudian dibandingkan dengan beberapa nilai 

ambang (threshold) untuk menentukan kondisi mata. 

Evaluasi performa liveness detection dilakukan 

menggunakan tiga metrik utama sebagaimana pada 

Persamaan 2–4: Accuracy, False Acceptance Rate 

(FAR), dan False Rejection Rate (FRR). 

𝐴𝑘𝑢𝑟𝑎𝑠𝑖 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                         (2) 

𝐹𝐴𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                       (3) 

𝐹𝑅𝑅 =  
𝐹𝑁

𝐹𝑁+𝑇𝑃
                                                       (4) 

Accuracy mengukur tingkat keseluruhan prediksi yang 

benar. FAR (False Acceptance Rate) menunjukkan 

seberapa sering mata tertutup salah diklasifikasikan 

sebagai terbuka, sedangkan FRR (False Rejection Rate) 

menunjukkan seberapa sering mata terbuka salah 

diklasifikasikan sebagai tertutup. Ketiga metrik tersebut 

digunakan untuk menentukan threshold EAR yang 

paling stabil dan akurat pada skenario real-time.  

2.5. Frontend 

Frontend berfungsi sebagai antarmuka utama yang 

menangani pengambilan video dari kamera perangkat 

menggunakan API getUserMedia dan menampilkan 

hasil deteksi secara real-time. Frame video yang diambil 

dikonversi ke format Base64 dan dikirim ke backend 

melalui permintaan HTTP POST secara asynchronous 

agar proses deteksi tidak mengganggu tampilan video. 

HTML, CSS, dan JavaScript digunakan karena 

kompatibel dengan seluruh browser modern serta 

mendukung integrasi langsung dengan kamera. 

JavaScript mengatur pengiriman frame, menampilkan 

bounding box dan label klasifikasi, serta memperbarui 

status liveness berdasarkan respons JSON dari backend. 
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Desain ini memastikan frontend tetap ringan dan 

responsif pada berbagai perangkat.  

Melalui desain antarmuka yang sederhana dan interaktif, 

frontend memungkinkan pengguna melihat hasil deteksi 

spoofing dan kedipan mata secara real-time. Dengan 

demikian, frontend tidak hanya berperan sebagai 

tampilan visual, tetapi juga sebagai komponen penting 

dalam memastikan alur autentikasi berjalan cepat dan 

konsisten pada aplikasi berbasis web.  

2.6. Backend 

Backend berfungsi sebagai pusat pemrosesan utama 

yang menjalankan inferensi deteksi spoofing dan 

liveness. Setiap frame yang dikirimkan dari frontend 

diterima melalui endpoint REST API, kemudian melalui 

proses prapemrosesan sebelum diolah oleh model 

YOLOv8n. Model menghasilkan deteksi wajah beserta 

kategorinya, yaitu real, printed, digital, atau mask. Jika 

wajah terdeteksi sebagai “real”, backend mengekstraksi 

titik facial landmark pada area mata dan menghitung Eye 

Aspect Ratio (EAR) untuk menilai kondisi kedipan 

sebagai verifikasi liveness.  

Backend dikembangkan menggunakan framework Flask 

karena sifatnya yang ringan, fleksibel, dan efisien untuk 

memenuhi kebutuhan inferensi real-time pada aplikasi 

web. Flask memungkinkan pengaturan routing yang 

sederhana, integrasi pustaka deep learning berbasis 

Python, serta latensi rendah dalam pemrosesan citra. 

Seluruh proses inferensi dilakukan di sisi server untuk 

menjaga keamanan model dan memastikan performa 

konsisten pada berbagai perangkat pengguna.  

Backend mengirimkan hasil deteksi kepada frontend 

dalam bentuk respons JSON yang memuat label 

klasifikasi, nilai confidence, dan status kedipan mata. 

Dengan demikian, backend berperan penting dalam 

memastikan alur autentikasi berjalan cepat, akurat, dan 

stabil pada sistem anti-spoofing berbasis web. 

2.7. Dataset and Preprocessing 

Dataset dalam penelitian ini terdiri dari 400.800 citra 

dan 18 video yang mencakup empat kategori spoofing, 

yaitu real, printed, digital, dan mask. Seluruh citra 

diperoleh dari kombinasi dataset terbuka seperti 

CelebA-Spoof, iBeta, dan beberapa dataset Kaggle [20]-

[39] yang menyediakan keragaman etnis, kondisi 

pencahayaan, pose wajah, serta variasi teknik serangan. 

Selain itu, data video direkam secara mandiri untuk 

menyediakan sampel kedipan yang diperlukan dalam 

evaluasi liveness berbasis EAR. Keberagaman ini 

memastikan bahwa model dapat belajar dan melakukan 

generalisasi pada berbagai kondisi autentikasi di dunia 

nyata.  

Tahap preprocessing dilakukan untuk memastikan 

kualitas dan konsistensi data yang masuk ke model 

YOLOv8n. Wajah terlebih dahulu diekstraksi dari setiap 

frame menggunakan OpenCV dan modul deteksi wajah. 

Citra kemudian dipotong dengan margin tertentu untuk 

mempertahankan fitur penting pada area wajah. Deteksi 

blur dilakukan menggunakan metode variansi Laplacian 

untuk menghapus citra yang tidak fokus. Setiap citra 

yang lolos seleksi diberi anotasi dalam format YOLO, 

termasuk class ID dan koordinat bounding box yang ter-

normalisasi. Contoh proses deteksi wajah ditampilkan 

pada Gambar 5. 

 

Gambar 5. Proses Deteksi Wajah 

Dataset dibagi menjadi tiga subset, yaitu 70% untuk 

pelatihan, 10% untuk validasi, dan 20% untuk 

pengujian. Pembagian ini dilakukan secara proporsional 

pada setiap kategori spoofing untuk mencegah bias kelas 

dan memastikan evaluasi model lebih representatif. 

Struktur dataset difinalisasi dalam berkas konfigurasi 

YAML agar dapat langsung terintegrasi dengan pipeline 

pelatihan YOLOv8n.  

Secara keseluruhan, proses preprocessing dirancang 

untuk menghasilkan data yang bersih, terstruktur, dan 

konsisten sehingga model dapat belajar pola spoofing 

secara efektif serta mempertahankan performa yang 

stabil pada tahap pengujian. 

2.8. Desain Eksperimen 

Desain eksperimen penelitian ini mencakup dua 

komponen utama, yaitu evaluasi deteksi spoofing 

menggunakan YOLOv8n dan evaluasi liveness 

detection berbasis Eye Aspect Ratio (EAR). Seluruh 

konfigurasi pelatihan dan pemilihan parameter 

ditetapkan berdasarkan pertimbangan teknis serta acuan 

penelitian terdahulu.  

Pada deteksi spoofing, dua skenario pelatihan 

digunakan: fine-tuning pretrained weights dan training 

from scratch. Pendekatan pretrained dipilih untuk 

memperoleh konvergensi yang lebih cepat dan stabil 

karena model telah memiliki representasi awal dari 

dataset COCO. Sebaliknya, pelatihan dari awal 

digunakan untuk menilai kemampuan model 

mempelajari pola spoofing secara murni tanpa bias dari 

dataset umum. Perbandingan kedua skenario ini 

digunakan untuk mengetahui efektivitas transfer 

learning terhadap performa akhir model.  

Parameter pelatihan ditetapkan agar seimbang antara 

akurasi dan efisiensi. Resolusi input 640×640 digunakan 

karena merupakan konfigurasi default YOLOv8 yang 

efektif pada varian ringan. Pelatihan dilakukan selama 
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100 epoch berdasarkan hasil percobaan awal yang 

menunjukkan konvergensi pada rentang epoch 70–90, 

sedangkan batch size 16 dipilih untuk menjaga stabilitas 

pembaruan bobot pada GPU RTX 3060. Pemilihan 

varian YOLOv8n didasarkan pada jumlah parameternya 

yang kecil sehingga mampu mendukung inferensi real-

time pada sistem berbasis web. 

Evaluasi model dilakukan menggunakan metrik 

Precision, Recall, mAP50, dan mAP50–95 untuk 

menggambarkan kualitas deteksi pada berbagai tingkat 

akurasi bounding box. Selain evaluasi berbasis dataset, 

model juga diuji secara real-time menggunakan kamera 

untuk menilai ketahanannya terhadap variasi 

pencahayaan, pose, dan aksesori wajah 

Komponen liveness detection diuji menggunakan empat 

nilai threshold EAR, yaitu 0.15, 0.17, 0.20, dan 0.25. 

Rentang threshold ini dipilih berdasarkan temuan 

penelitian terdahulu [18], [40], yang menunjukkan 

bahwa nilai EAR mata terbuka umumnya berada pada 

rentang 0.20–0.30, sedangkan EAR mata tertutup berada 

di bawah 0.18. Setiap threshold diuji menggunakan 

metrik Accuracy, False Acceptance Rate (FAR), dan 

False Rejection Rate (FRR) untuk menentukan ambang 

yang paling stabil dalam membedakan kondisi mata 

pada penggunaan real-time.  

Secara keseluruhan, desain eksperimen ini memastikan 

bahwa kedua komponen, yaitu deteksi spoofing dan 

liveness detection, diuji secara sistematis dan berbasis 

justifikasi ilmiah sehingga valid untuk implementasi 

sistem anti-spoofing berbasis web.  

3.  Hasil dan Pembahasan 

3.1. Pelatihan Model YOLOv8n 

Pelatihan dilakukan menggunakan dua skenario, yaitu 

fine-tuning bobot pre-trained COCO dan pelatihan dari 

awal tanpa bobot awal. Kurva hasil pelatihan model 

dengan pre-trained dapat dilihat pada Gambar 6 dan 

Gambar 7.  

 

Gambar 6. Kurva Loss Pelatihan Model YOLOv8n Pre-trained 

Gambar 6 menyajikan kurva loss hasil pelatihan model 

YOLOv8n dengan bobot pre-trained, yang terdiri dari 

box_loss, cls_loss, dan dfl_loss pada data pelatihan dan 

validasi. Kurva-kurva tersebut menunjukkan penurunan 

tajam pada 10–15 epoch pertama sebelum mendatar 

pada nilai yang rendah hingga epoch ke-100. Jarak 

antara loss pelatihan dan validasi relatif kecil dan tidak 

terlihat peningkatan loss yang berkepanjangan pada data 

validasi. Pola ini menunjukkan bahwa proses optimisasi 

berjalan stabil, model tidak mengalami overfitting yang 

signifikan, dan posisi bounding box serta distribusinya 

dapat dipelajari dengan baik. Lonjakan kecil pada 

val/box_loss dan val/cls_loss di awal epoch 

mencerminkan fase adaptasi terhadap distribusi data 

spoofing yang lebih beragam dibandingkan COCO, 

namun setelah itu kurva cepat turun dan stabil pada nilai 

yang konsisten. 

 

Gambar 7. Kurva Loss Pelatihan Model YOLOv8n Tanpa Pre-trained 

Gambar 7 menampilkan kurva loss untuk box_loss, 

cls_loss, dan dfl_loss pada data pelatihan dan validasi. 

Secara umum, bentuk kurva mirip dengan model pre-

trained, tetapi fase penurunan awal berlangsung sedikit 

lebih lama. Hal ini wajar karena model tidak membawa 

pengetahuan awal dari COCO dan harus membangun 

representasi fitur dari nol. Meskipun demikian, loss pada 

data pelatihan dan validasi tetap turun hingga mencapai 

nilai rendah yang stabil, dengan gap yang kecil di antara 

keduanya. Pola ini menunjukkan bahwa arsitektur 

YOLOv8n yang anchor-free dengan blok C2f dan modul 

SPPF mampu memfasilitasi pembelajaran fitur secara 

efisien bahkan tanpa bobot awal, selama didukung oleh 

dataset yang cukup besar dan beragam.  

Rata-rata mAP50 pada Tabel 1 mencapai 99,5% baik 

pada data pelatihan maupun pengujian, sedangkan 

mAP50–95 berada di kisaran 91,2% untuk pelatihan dan 

90,4% untuk pengujian. Kelas real menunjukkan kinerja 

terbaik dengan mAP50–95 sekitar 95–96%, yang 

mengindikasikan bahwa pola tekstur dan kontur wajah 

manusia asli relatif konsisten dan mudah dipelajari oleh 

model. Sebaliknya, kelas digital mencatat mAP50–95 
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terendah, yaitu sekitar 88–89%. Perbedaan ini dapat 

dijelaskan oleh karakteristik tampilan layar yang sering 

memunculkan artefak visual seperti pantulan cahaya, 

pola moiré, dan variasi brightness yang ekstrem. Artefak 

tersebut cenderung mengganggu pola gradien dan 

kontur tepi wajah sehingga batas objek pada layar 

menjadi kurang jelas, membuat detektor berbasis 

bounding box seperti YOLOv8n lebih sulit memetakan 

objek dengan presisi tinggi. 

Tabel  1. Hasil Pelatihan Model YOLOv8n Pre-trained Model  

Kelas 
mAP50 

Train 

mAP50-

95 

Train 

mAP50 

Test 

mAP50- 

95 Test 

real 99,5% 96,2% 99,5% 95,8% 

printed 99,4% 89,0% 99,4% 88,1% 

digital 99,5% 88,5% 99,4% 87,4% 

mask 99,5% 91,1% 99,5% 90,0% 

Rata-rata 99,5% 91,2% 99,4% 90,4% 

Tabel 2 merangkum hasil pelatihan untuk skenario tanpa 

bobot pre-trained. Rata-rata mAP50 yang diperoleh 

sebesar 99,4% baik pada data pelatihan maupun 

pengujian, sedangkan mAP50–95 berada di kisaran 

90,8% untuk pelatihan dan 90,1% untuk pengujian. 

Nilai-nilai ini hanya sedikit lebih rendah dibandingkan 

model pre-trained dan tetap menunjukkan ketelitian 

spasial yang tinggi dalam memprediksi posisi dan 

ukuran wajah. Pola per kelas juga konsisten dengan 

skenario pre-trained: kelas real kembali mencatat 

mAP50–95 tertinggi sekitar 95–96%, sedangkan kelas 

digital menjadi yang terendah sekitar 87–88%. 

Konsistensi tren ini menguatkan dugaan bahwa 

tantangan utama pada kelas digital berasal dari 

karakteristik intrinsik media tampilan, bukan dari 

perbedaan strategi pelatihan. Selain itu, kedekatan nilai 

mAP antara data pelatihan dan pengujian pada kedua 

skenario menunjukkan bahwa model mampu melakukan 

generalisasi dengan baik dan tidak terjebak pada 

overfitting yang berat.  

Tabel 2. Hasil Pelatihan Model YOLOv8n Tanpa Pre-trained Model  

Kelas 
mAP50 

Train 

mAP50-

95 

Train 

mAP50 

Test 

mAP50- 

95 Test 

real 99,5% 96,0% 99,5% 95,7% 

printed 99,3% 88,6% 99,3% 87,7% 

digital 99,4% 87,9% 99,4% 87,1% 

mask 99,5% 90,6% 99,5% 89,8% 

Rata-rata 99,4% 90,8% 99,4% 90,1% 

Secara keseluruhan, hasil pada pelatihan model 

menunjukkan bahwa kedua skenario pelatihan 

menghasilkan performa yang sangat tinggi dan stabil. 

Penggunaan bobot pre-trained memberikan keuntungan 

utama berupa konvergensi yang lebih cepat, tetapi 

perbedaan mAP50 dan mAP50–95 akhir antara kedua 

model relatif kecil. Perbedaan kinerja antar kelas lebih 

banyak dipengaruhi oleh sifat tekstur dan artefak visual 

masing-masing kategori, khususnya pada kelas digital 

yang dipengaruhi pantulan dan pola layar, dibandingkan 

oleh konfigurasi pelatihan. Temuan ini mengindikasikan 

bahwa YOLOv8n memiliki kapasitas representasi yang 

memadai untuk tugas face anti-spoofing multi-kategori 

dan layak dijadikan basis untuk analisis evaluasi model 

dan perbandingan dengan studi terdahulu pada subbab 

berikutnya. 

3.2. Evaluasi Model 

Evaluasi dilakukan pada dua model YOLOv8n—pre-

trained dan from-scratch—menggunakan 40.080 citra 

data uji (10% dari total dataset) yang mencakup empat 

kategori spoofing: real, printed, digital, dan mask. 

Penilaian performa dilakukan menggunakan precision, 

recall, mAP50, dan mAP50–95 untuk menilai 

kemampuan klasifikasi model.  

Gambar 8 menampilkan evolusi metrik precision, recall, 

mAP50, dan mAP50–95 selama pelatihan untuk model 

dengan bobot pre-trained. Kurva pada Gambar 8 

menunjukkan bahwa seluruh metrik naik sangat cepat 

pada awal pelatihan dan kemudian berada pada plateau 

tinggi hingga epoch ke-100. Precision dan recall 

mendekati nilai 1,0, menandakan bahwa jumlah false 

positive dan false negative sangat kecil. Nilai mAP50 

mencapai level tinggi sejak awal, sedangkan mAP50–95 

meningkat lebih bertahap sebelum stabil di kisaran 0,90. 

Pola ini konsisten dengan teori transfer learning, di mana 

bobot COCO menyediakan fitur generik yang kuat 

sehingga model hanya perlu menyesuaikan ke 

karakteristik spoofing wajah.  

 

Gambar 8. Hasil Evaluasi Pelatihan Model YOLOv8n Pre-trained 

Gambar 9 menyajikan metrik yang sama untuk model 

yang dilatih tanpa bobot pre-trained. Bentuk kurva pada 

Gambar 9 mirip dengan Gambar 7, tetapi fase kenaikan 

awal sedikit lebih panjang. Precision dan recall baru 

benar-benar stabil mendekati 0,99 setelah sekitar dua 

puluh epoch, sementara mAP50–95 membutuhkan 
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beberapa epoch tambahan sebelum mencapai nilai 

mendekati 0,90. Perbedaan pola ini menunjukkan bahwa 

model from-scratch membutuhkan waktu lebih lama 

untuk membangun representasi fitur, tetapi pada 

akhirnya mampu menyamai kualitas model pre-trained 

karena terbantu oleh ukuran dan keragaman dataset.  

 

Gambar 9. Hasil Evaluasi Pelatihan Model YOLOv8n Tanpa Pre-

trained 

Hasil evaluasi pada data validasi untuk model pre-

trained ditampilkan pada Tabel 3. Tabel 3 menyajikan 

nilai precision, recall, mAP50, dan mAP50–95 per kelas. 

Nilai rata-rata precision mencapai 99,5% dan recall 

98,6%, dengan mAP50 sebesar 99,4% dan mAP50–95 

sebesar 90,4%. Kelas real memiliki kombinasi nilai 

tertinggi, yaitu precision dan recall 99,9% serta mAP50–

95 sekitar 95,9%. Hal ini menunjukkan bahwa pola 

tekstur dan kontur wajah asli relatif konsisten dan mudah 

dipisahkan dari serangan spoofing. Kelas mask juga 

mencatat performa tinggi dengan mAP50–95 sekitar 

90,2%, karena topeng memiliki pola tepi dan tekstur 

material yang berbeda dari kulit manusia sehingga lebih 

mudah dikenali detector. 

Tabel 3. Hasil Evaluasi Model YOLOv8n Dengan Pre-trained Model 

Kelas Precision Recall mAP50 
mAP50- 

95 

real 99,9% 99,9% 99,5% 95,9% 

printed 98,7% 98,4% 99,4% 87,9% 

digital 99,5% 97,6% 99,4% 87,6% 

mask 99,8% 98,6% 99,5% 90,2% 

Rata-rata 99,5% 98,6% 99,4% 90,4% 

 

Tabel 4 menyajikan hasil evaluasi untuk model 

YOLOv8n yang dilatih tanpa bobot pre-trained. Secara 

rata-rata, precision sebesar 99,2% dan recall 98,7%, 

sedangkan mAP50 dan mAP50–95 masing-masing 

berada pada 99,4% dan 90,4%. Performa rata-rata ini 

hampir identik dengan model pre-trained. Kelas real 

kembali menjadi yang paling tinggi dengan mAP50–95 

sekitar 95,7%, sementara kelas digital kembali menjadi 

yang terendah dengan mAP50–95 sekitar 87,3–87,7%. 

Konsistensi pola ini menunjukkan bahwa perbedaan 

utama antar kelas lebih ditentukan oleh karakteristik 

visual tiap kategori, bukan oleh skenario pelatihan yang 

digunakan. 

Tabel 4. Hasil Evaluasi Model YOLOv8n Tanpa Pre-trained Model 

Kelas Precision Recall mAP50 
mAP50- 

95 

real 99,8% 99,8% 99,5% 95,7% 

printed 98,1% 98,5% 99,3% 87,7% 

digital 99,2% 97,9% 99,4% 87,3% 

mask 99,7% 98,7% 99,5% 90,0% 

Rata-rata 99,2% 98,7% 99,4% 90,4% 

Performa kelas digital yang secara konsisten sedikit 

lebih rendah dibanding kelas lain dapat dijelaskan dari 

sisi karakteristik data. Wajah digital direkam dari 

tampilan layar ponsel atau monitor yang menghasilkan 

berbagai artefak, seperti pantulan cahaya, pola moiré 

akibat interaksi piksel layar dengan sensor kamera, serta 

variasi brightness yang ekstrem. Artefak ini membuat 

batas kontur wajah dan gradasi tekstur kulit menjadi 

kurang jelas dibanding wajah asli atau printed, sehingga 

prediksi bounding box dan klasifikasi menjadi sedikit 

lebih sulit. Selain itu, beberapa sampel digital memiliki 

resolusi efektif lebih rendah dibanding kelas lainnya, 

karena wajah yang ditampilkan di layar sering hanya 

menempati sebagian kecil area frame. Kondisi ini secara 

teoritis menurunkan rasio signal-to-noise fitur lokal 

yang dibutuhkan oleh head deteksi YOLOv8n.  

Tabel 5 menunjukkan bahwa model YOLOv8n dalam 

penelitian ini mencapai recall yang lebih tinggi dan 

precision yang sebanding dengan hasil YOLOv3–

YOLOv5 pada penelitian Vardhan et al. (2025). Pada 

model pre-trained, nilai precision berada pada tingkat 

yang sama dengan Vardhan, namun recall meningkat 

cukup signifikan, mengindikasikan kemampuan deteksi 

spoof yang lebih baik. Sementara itu, model from-

scratch menghasilkan precision yang sedikit lebih 

rendah, tetapi tetap memberikan recall yang lebih tinggi. 

Perbaikan recall ini sangat relevan dalam konteks anti-

spoofing, karena recall yang tinggi membantu 

meminimalkan kelolosan serangan.  

Tabel 5. Perbandingan Kinerja Model Penelitian Ini dengan R. 

Vishnu Sai Vardhan dkk. (2025) 

Model/Studi  Precision Recall 

Proposed YOLOv8n 

(Pre-trained) 
99,5% 98,6% 

Proposed YOLOv8n 

(From Scratch) 
99,2% 98,7% 

YOLOv3–YOLOv5 

(Vardhan et al., 2025) 
99,5% 97,6% 
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Kemampuan model dalam skenario penggunaan nyata 

dievaluasi melalui pengujian real-time berbasis kamera, 

yang hasil visualnya dirangkum pada Tabel 6.  

Tabel 6. Hasil Pengujian Model YOLOv8n  

Real Printed Digital Mask 

    

    

    

 
 

  

 
   

    

 
 

 
 

 
 

  

 

  
 

    

 

Pengujian dilakukan terhadap 10 partisipan dengan 

karakteristik yang beragam (jenis kelamin, etnis, dan 

kondisi pencahayaan berbeda). Meskipun jumlah 

partisipan relatif terbatas, uji ini bertujuan untuk 

mengevaluasi performa sistem secara praktis pada 

kondisi dunia nyata, bukan untuk analisis statistik 

populasi. Validasi generalisasi model telah dilakukan 

sebelumnya melalui dataset pelatihan yang besar dan 

beragam, sehingga jumlah partisipan dianggap memadai 

untuk tahap verifikasi sistem real-time.  

Tabel 6 menampilkan contoh keluaran sistem untuk 

sepuluh partisipan pada empat kondisi, yaitu wajah asli, 

printed, digital, dan mask, baik untuk model dengan 

maupun tanpa bobot pre-trained. Pada sebagian besar 

contoh pada Tabel 6, bounding box dan label kelas yang 

dihasilkan sudah konsisten dengan kondisi sebenarnya 

dengan confidence di atas 0,8. Rata-rata confidence 

untuk kelas real berada di kisaran 94–95%, printed dan 

mask sekitar 92–93%, sedangkan digital berkisar 86–

87%. Pola ini sejalan dengan temuan kuantitatif pada 

Tabel 3 dan Tabel 4, yaitu bahwa kelas digital 

merupakan kasus paling menantang, sementara kelas 

real dan mask relatif lebih mudah diidentifikasi.  

Selain variasi kondisi wajah dan serangan spoofing, 

pengujian juga mencakup variasi pencahayaan, 

termasuk kondisi low-light dan pencahayaan tidak 

merata. Hasil pengujian menunjukkan bahwa model 

YOLOv8n tetap mampu mendeteksi wajah dengan 

confidence di atas 90% pada kondisi pencahayaan redup, 

sehingga dapat disimpulkan bahwa sistem memiliki 

ketahanan yang baik terhadap variasi intensitas cahaya 

pada proses autentikasi real-time. 

Sistem juga diuji pada partisipan yang menggunakan 

kacamata untuk mengetahui pengaruh occlusion 

terhadap performa deteksi. Hasil pengujian 

menunjukkan bahwa keberadaan kacamata tidak 

memberikan dampak signifikan terhadap klasifikasi 

wajah, di mana wajah asli tetap terdeteksi sebagai 

kategori REAL dengan confidence di atas 93%. Hal ini 

mengindikasikan bahwa model YOLOv8n mampu 

mengekstraksi fitur struktural wajah secara konsisten 

meskipun sebagian area mata tertutup oleh kacamata 

Selama proses pengujian ditemukan beberapa kasus 

kesalahan klasifikasi. Salah satu contohnya adalah 

ketika wajah asli yang ditampilkan dalam posisi miring 

tidak berhasil dikenali oleh sistem dan memunculkan 

prediksi yang tidak tepat. Selain itu, terdapat pula 

kondisi di mana wajah palsu, seperti gambar pada media 

cetak (printed), justru diklasifikasikan sebagai REAL. 

Kesalahan tersebut bersifat sesaat dan tidak terjadi 

secara terus-menerus, karena pada frame-frame 

berikutnya prediksi model kembali sesuai dengan label 

yang seharusnya. Temuan ini menunjukkan bahwa 

meskipun model secara umum memberikan hasil yang 

baik, tetap terdapat potensi misclassifications yang perlu 

diperhatikan, terutama pada kondisi input yang tidak 
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ideal atau menyerupai karakteristik wajah asli secara 

visual.  

Meskipun performa deteksi spoofing dan liveness pada 

penelitian ini menunjukkan hasil yang sangat baik, 

terdapat beberapa batasan yang perlu diperhatikan untuk 

interpretasi dan penerapan di dunia nyata.  

Dataset yang digunakan sudah cukup besar dan 

beragam, namun tetap berpotensi mengandung bias 

tertentu terkait distribusi etnis, variasi perangkat 

perekam, dan kondisi pencahayaan yang mungkin belum 

sepenuhnya mewakili seluruh populasi pengguna. Selain 

itu, penelitian ini belum secara eksplisit mengevaluasi 

ketahanan model terhadap serangan berbasis deepfake 

yang memanfaatkan manipulasi temporal yang lebih 

kompleks, sehingga generalisasi sistem pada kategori 

serangan tersebut perlu diuji lebih lanjut. Kinerja pada 

perangkat berbeda, khususnya perangkat mobile atau 

edge dengan kapasitas komputasi sangat terbatas, juga 

berpotensi bervariasi meskipun YOLOv8n dirancang 

ringan. Oleh karena itu, pengujian lanjutan pada 

berbagai konfigurasi perangkat, kondisi lingkungan, dan 

tipe serangan yang lebih modern menjadi langkah 

penting untuk memperkuat validitas dan ketangguhan 

sistem. 

3.3. EAR 

Eye Aspect Ratio (EAR) digunakan untuk membedakan 

kondisi mata terbuka dan tertutup berdasarkan jarak 

vertikal dan horizontal kelopak mata. Dalam setiap 

frame, sistem mendeteksi wajah menggunakan 

YOLOv8n, kemudian mengekstrak landmark mata kiri 

dan kanan. Enam titik landmark digunakan untuk 

menghitung EAR, sehingga perubahan geometri mata 

dapat dilacak secara konsisten. Ketika mata mulai 

menutup, jarak vertikal antar kelopak mata menurun 

jauh lebih cepat dibanding jarak horizontalnya, sehingga 

nilai EAR mengikuti pola penurunan yang signifikan. 

Mekanisme ini membuat EAR menjadi indikator 

fisiologis yang relevan untuk sistem anti-spoofing 

modern. 

Pada penelitian ini, 18 video menghasilkan 16.630 frame 

yang kemudian diberi pseudo-label otomatis 

berdasarkan ambang awal EAR sebesar 0,18, mengacu 

pada nilai umum yang digunakan dalam literatur deteksi 

kedipan [18]. Frame dengan EAR < 0,18 dikategorikan 

sebagai mata tertutup, sedangkan nilai ≥ 0,18 ditetapkan 

sebagai mata terbuka. Pseudo-label ini digunakan 

sebagai acuan evaluasi untuk beberapa variasi threshold 

prediksi (0.15, 0.17, 0.20, 0.25). Hasil pengujian 

ditampilkan pada Tabel 7.  

Tabel 7. Hasil Evaluasi EAR Berdasarkan Variasi Threshold 

Threshold Accuracy Precision Recall FAR FRR 

0.15 97,52% 97,42% 100% 40,81% 0% 

0.17 99,02% 98,97% 100% 16,11% 0% 

0.20 97,87% 100% 97,73% 0% 2,27% 

0.25 87,65% 100% 86,85% 0% 13,15% 

Hasil pada Tabel 7 menunjukkan bahwa setiap threshold 

memberikan karakteristik performa yang berbeda. Pada 

threshold 0.15, nilai recall mencapai 100%, tetapi FAR 

sangat tinggi (40,81%). Kondisi ini terjadi karena 

ambang batas yang terlalu rendah membuat sistem 

terlalu sensitif, sehingga penurunan EAR kecil akibat 

bayangan, pantulan cahaya, atau perubahan pose 

dianggap sebagai kedipan. Akibatnya, banyak mata 

terbuka salah terdeteksi sebagai tertutup. 

Saat threshold dinaikkan menjadi 0.25, terjadi situasi 

sebaliknya. Sistem menjadi lebih ketat sehingga hanya 

kedipan dengan penurunan EAR yang jelas yang dapat 

dikenali. Meskipun FAR menjadi 0%, FRR naik hingga 

13,15%, menunjukkan bahwa sebagian kedipan nyata 

tidak terdeteksi. Hal ini dapat disebabkan oleh variasi 

fisiologis kedipan pengguna, misalnya sebagian orang 

memiliki kedipan yang lebih kecil atau tidak menutup 

mata secara penuh. 

Threshold 0.20 menunjukkan kinerja yang lebih 

seimbang, ditandai dengan FAR dan FRR yang rendah. 

Namun, recall menurun menjadi 97,73%, yang berarti 

sebagian kecil kedipan masih terlewat. Sementara itu, 

threshold 0.17 memberikan performa paling stabil dan 

konsisten di semua metrik, ditunjukkan oleh accuracy 

tertinggi sebesar 99,02%, precision sebesar 98,97%, 

recall tetap sempurna pada 100%, serta FAR yang jauh 

lebih rendah dibandingkan threshold 0.15. FRR juga 

berada pada nilai 0%, sehingga tidak ada kedipan asli 

yang diabaikan oleh sistem.  

Secara matematis, pemilihan threshold 0.17 dapat 

dijustifikasi dari pola distribusi EAR. Nilai EAR untuk 

mata terbuka pada sebagian besar pengguna berada pada 

kisaran 0.20–0.30, sedangkan nilai EAR untuk mata 

tertutup biasanya berada di bawah 0.18. Dengan 

meletakkan threshold pada 0.17, sistem berada tepat 

pada area pemisah antara dua distribusi tersebut 

sehingga tumpang tindih (overlap) menjadi minimal. 

Pemisahan ini mengurangi peluang kedua kelas saling 

salah diklasifikasikan. Hasil tersebut menunjukkan 

bahwa threshold 0.17 merupakan titik optimal yang 

meminimalkan trade-off sensitivitas (recall) dan 

ketelitian (precision), sekaligus menjaga stabilitas 

deteksi pada kondisi nyata yang dipengaruhi noise 

kamera dan variasi fisiologi pengguna. 
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3.4. Pembangunan Sistem Berbasis Web 

Pembangunan Sistem Anti-Spoofing berbasis web 

berfungsi untuk melakukan autentikasi pengguna secara 

real-time dengan mendeteksi keberadaan manusia serta 

memastikan adanya kedipan mata sebagai indikator 

liveness. Sistem dibangun menggunakan pendekatan 

client-server, di mana pengguna akan mengakses 

antarmuka berbasis web melalui perangkat dengan 

kamera yang terintegrasi. Kamera akan menangkap citra 

wajah secara langsung yang kemudian dikirimkan ke 

sistem informasi untuk diproses. Proses deteksi pertama 

menggunakan model YOLOv8n, yang bertujuan untuk 

mengidentifikasi apakah wajah yang tertangkap 

merupakan manusia asli atau objek palsu seperti gambar 

cetak, tampilan digital, atau topeng. Setelah wajah 

dikategorikan sebagai asli, sistem melanjutkan ke proses 

kedua yaitu pendeteksian kedipan mata menggunakan 

metode facial landmark dari Dlib dan perhitungan Eye 

Aspect Ratio (EAR) untuk menentukan liveness 

pengguna. Alur proses ini dapat dilihat pada Gambar 10 

yang menggambarkan infrastruktur sistem secara 

keseluruhan. 

Gambar 10. Infrastruktur Sistem 

Gambar 10 menggambarkan bahwa proses dimulai 

ketika pengguna memberikan izin akses kamera melalui 

browser. Frame video dikirimkan secara berkala menuju 

server melalui koneksi HTTP. Server kemudian 

menjalankan tahap deteksi pertama menggunakan model 

YOLOv8n untuk menentukan apakah objek pada frame 

merupakan wajah dan mengklasifikasikannya ke dalam 

kategori real, printed, digital, atau mask. Hanya wajah 

yang terdeteksi sebagai real yang diteruskan ke tahap 

liveness detection. Desain dua tahap ini diterapkan untuk 

mengurangi beban komputasi pada proses EAR karena 

sistem tidak perlu menghitung landmark mata apabila 

wajah sebelumnya telah diklasifikasikan sebagai 

spoofing pada tahap YOLOv8n. Mekanisme interaksi 

antara pengguna dan server ditunjukkan pada Gambar 

11. 

Gambar 11 menunjukkan mekanisme sistem yang 

terbagi menjadi dua yakni, sisi pengguna (client) dan 

server (backend). Alur proses dimulai dari pengguna 

yang mengakses sistem melalui browser. Setelah 

halaman dimuat, sistem akan secara otomatis meminta 

izin untuk mengakses kamera pada perangkat pengguna. 

Jika izin diberikan, maka webcam akan diinisialisasi 

untuk mulai menangkap video secara langsung. Sistem 

informasi pada sisi frontend akan melakukan proses 

ekstraksi frame dari video, kemudian mengirimkan 

frame tersebut ke server menggunakan protokol HTTP. 

Setelah frame diterima oleh server, proses dilanjutkan 

dengan tahapan deteksi manusia menggunakan model 

YOLOv8n. Model ini akan memproses frame untuk 

mendeteksi wajah dan mengklasifikasikan apakah wajah 

tersebut tergolong real (asli) atau termasuk dalam 

kategori spoofing seperti printed, digital, atau mask. Jika 

hasil klasifikasi menunjukkan bahwa wajah merupakan 

wajah asli, sistem akan melanjutkan proses ke tahap 

deteksi liveness melalui analisis kedipan mata.  

 

Gambar 11. Mekanisme Sistem 

Tahap deteksi kedipan dilakukan menggunakan pustaka 

dlib untuk mengekstraksi 68 titik landmark wajah, 

khususnya pada area mata. Berdasarkan titik- titik 

tersebut, sistem menghitung nilai Eye Aspect Ratio 

(EAR) untuk setiap mata. Jika nilai EAR mengalami 

penurunan signifikan dalam waktu singkat, maka 

dianggap sebagai kedipan. Apabila kedipan berhasil 

terdeteksi, maka sistem akan mengembalikan status 

verifikasi sebagai berhasil, menandakan bahwa 

pengguna adalah manusia asli yang hidup. Sebaliknya, 

jika tidak ditemukan kedipan, atau wajah dikategorikan 

sebagai palsu, maka status verifikasi ditolak. Proses ini 

berlangsung secara cepat dan efisien karena hanya 

menganalisis wajah yang telah dinyatakan valid oleh 

YOLOv8n.  

Gambar 12 menunjukkan halaman sistem web 

pendeteksian yang dapat menampilkan hasil dari proses 
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autentikasi secara real-time. Antarmuka ini 

menampilkan area video yang menayangkan citra 

langsung baik dari kamera internal atau eksternal 

pengguna. Terdapat instruksi yang mengarahkan 

pengguna untuk memperlihatkan wajah dan melakukan 

kedipan mata sebagai bagian dari proses verifikasi. 

Sistem akan menjalankan proses pendeteksian secara 

otomatis setelah pengguna menekan tombol “Mulai 

Verifikasi”.  

 

Gambar 12. Tampilan Sistem Web 

Hasil dari dua proses utama, yaitu pendeteksian manusia 

dan pendeteksian kedipan mata, ditampilkan secara 

eksplisit melalui indikator teks di bawah video. Label 

“Manusia” akan menunjukkan apakah sistem berhasil 

mendeteksi bahwa wajah pengguna tergolong sebagai 

manusia asli (real), sedangkan label “Kedip” akan 

memperlihatkan apakah sistem berhasil mendeteksi 

liveness melalui aktivitas kedipan mata. Masing-masing 

status disajikan secara visual dalam bentuk simbol 

centang (✓) atau silang (✗) untuk memudahkan 

pemahaman pengguna. Apabila kedua indikator 

menyatakan deteksi berhasil, maka pengguna dianggap 

telah terverifikasi secara sah sebagai manusia hidup 

3.5. Pengujian Waktu Pendeteksian Dengan Perangkat 

Laptop 

Pengujian waktu pendeteksian bertujuan untuk 

mengetahui sejauh mana sistem dapat bekerja secara 

responsif ketika dijalankan pada perangkat laptop biasa 

tanpa dukungan perangkat keras khusus. Dua komponen 

utama yang diuji adalah waktu deteksi wajah 

menggunakan YOLOv8n dan waktu validasi liveness 

menggunakan EAR. Pengujian dilakukan dengan 

webcam 720p pada model YOLOv8n pre-trained (100 

epoch) dan threshold EAR sebesar 0.17, berdasarkan 

hasil evaluasi optimal pada pengujian sebelumnya. 

Pengambilan waktu dalam pengujian ini dibagi menjadi 

dua tahap terpisah yang mencerminkan alur kerja sistem 

secara berurutan. Tahap pertama merupakan proses 

deteksi wajah menggunakan model YOLOv8n, di mana 

penghitungan waktu dimulai sejak tombol "Mulai 

Deteksi" ditekan oleh pengguna, dan dihentikan saat 

sistem berhasil mendeteksi wajah serta menampilkan 

status klasifikasi real. Setelah status dari YOLOv8n 

muncul, sistem secara otomatis masuk ke tahap kedua, 

yaitu proses validasi liveness melalui deteksi kedipan 

mata menggunakan metode EAR. Pada tahap ini, waktu 

dihitung kembali mulai dari nol detik, dan diakhiri saat 

sistem berhasil memverifikasi kedipan mata.  

Hasil pengujian dapat dilihat pada Tabel 8 yang 

menunjukkan bahwa waktu yang dibutuhkan oleh model 

YOLOv8n untuk mendeteksi wajah berkisar antara 0,45 

detik hingga 5,63 detik, dengan rata-rata sekitar 1,65 

detik. Sementara itu, waktu yang diperlukan oleh sistem 

untuk melakukan validasi kedipan mata menggunakan 

metode EAR memiliki rentang yang lebih bervariasi, 

yakni antara 0,46 detik hingga 8,65 detik, dengan rata-

rata sekitar 2,89 detik. Perbedaan ini disebabkan oleh 

sifat alami proses deteksi kedipan, yang sangat 

tergantung pada interaksi pengguna. Dalam beberapa 

kasus, sistem membutuhkan waktu lebih lama untuk 

mendeteksi kedipan, terutama jika pengguna tidak 

segera melakukan gerakan mata atau berada dalam 

posisi yang kurang ideal terhadap kamera.  

Waktu total yang dibutuhkan sistem untuk 

menyelesaikan proses deteksi dan validasi berkisar 

antara dua hingga sepuluh detik. Rentang waktu ini 

masih dapat dikategorikan sebagai responsif untuk 

penggunaan real-time dalam konteks autentikasi 

berbasis wajah. Dengan performa tersebut, sistem dapat 

diandalkan untuk digunakan dalam aplikasi berbasis 

web pada perangkat laptop tanpa memerlukan perangkat 

keras tambahan. Hasil ini juga menunjukkan bahwa 

kombinasi antara model YOLOv8n dan metode EAR 

cukup efektif dalam mendukung proses verifikasi 

identitas pengguna dengan mempertimbangkan aspek 

keamanan dan kenyamanan. 

Tabel 8. Hasil Pengujian Waktu Pendeteksian 

Pengujian ke- YOLOv8n (detik) EAR (detik) 

1 05.63 03.83 

2 01.35 03.28 

3 01.59 04.70 

4 01.84 03.38 

5 01.71 01.83 

6 00.45 01.26 

7 01.83 01.09 

8 01.65 01.73 

9 00.64 01.56 

10 01.78 01.66 

11 01.21 02.66 

12 01.66 00.46 

13 01.65 01.16 

14 01.19 01.21 

15 01.16 04.29 

16 01.26 06.41 

17 01.68 08.65 

18 01.96 02.35 

19 01.71 01.18 

20 01.23 05.15 

4.  Kesimpulan 

Penelitian ini menghasilkan sistem anti-spoofing wajah 

real-time yang mengintegrasikan YOLOv8n untuk 
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deteksi spoofing empat kelas (real, printed, digital, 

mask) serta Eye Aspect Ratio (EAR) untuk verifikasi 

liveness melalui kedipan mata. Evaluasi menunjukkan 

bahwa kedua strategi pelatihan—baik pretrained 

maupun from scratch—memberikan performa tinggi dan 

stabil dengan rata-rata precision 99%, recall 98%, 

mAP50 99.4%, dan mAP50–95 sekitar 90%. Pengujian 

real-time pada berbagai kondisi pencahayaan, variasi 

etnis, serta pengguna berkacamata turut mengonfirmasi 

ketahanan sistem dengan rata-rata confidence di atas 

90%.  

Komponen liveness EAR menunjukkan bahwa threshold 

0.17 memberikan hasil terbaik dengan akurasi 99.02%, 

recall 100%, serta FRR 0%, menandakan keseimbangan 

optimal antara sensitivitas dan ketelitian dalam 

mendeteksi kedipan mata. 

Novelty penelitian ini terletak pada integrasi model 

YOLOv8n—yang masih minim eksplorasi dalam 

domain face anti-spoofing—dengan mekanisme 

liveness EAR dalam satu pipeline inferensi real-time 

berbasis web. Kontribusi ini memberikan solusi yang 

ringan, cepat, dan dapat diimplementasikan pada 

perangkat dengan sumber daya terbatas, termasuk laptop 

dan perangkat mobile.  

Secara keseluruhan, hasil penelitian menunjukkan 

bahwa kombinasi YOLOv8n dan EAR mampu 

menghasilkan sistem anti-spoofing berbasis web yang 

ringan dengan inferensi cepat dan performa real-time 

yang stabil untuk kebutuhan autentikasi wajah modern. 

Sebagai arahan pengembangan selanjutnya, penelitian 

ini perlu diperluas melalui pengujian terhadap serangan 

berbasis deepfake video, evaluasi pada berbagai model 

kamera dan perangkat mobile, serta validasi pada 

lingkungan non-terkontrol untuk memastikan 

ketangguhan sistem pada skenario nyata yang lebih 

beragam. 
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