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Abstract  

In automated manufacturing, verifying material orientation is essential to ensure the product assembly proceeds without errors. 

For instance, in the beverage industry, incorrect orientation of materials, such as bottle caps, can lead to failures in the packaging 

process, resulting in improperly sealed bottles that may compromise product quality and safety. This study compares the 

performance of Support Vector Machine (SVM) and k-Nearest Neighbors algorithms for verifying material orientation 

verification through automated optical inspection. The images were processed using the Inception V3 Convolutional Neural 

Network (CNN) to extract relevant image features, which were then classified using SVM and kNN algorithms. As a result, 

SVM achieved high classification performance during testing, with classification accuracy, precision, recall, and F1 score of 

1.0 compared to kNN, which achieved only 0.967. However, kNN demonstrated superior computational efficiency, with a 

training time of 1.126 seconds and a validation time of 0.713 seconds, compared to SVM's training time of 3.101 seconds and 

validation time of 1.479 seconds. These results indicate that while both methods are highly effective for material orientation 

verification, kNN offers significant advantages in terms of computational speed, making it more suitable for real-time 

applications. The implications of this study highlight the potential for integrating the proposed method in industrial applications, 

promoting enhanced efficiency and reducing error rates in automated assembly lines. 

Keywords: Automated Optical Inspection, Inception V3, Convolutional Neural Network, Support Vector Machine, k-Nearest 

Neighbors 
 

1. Introduction  

Material orientation plays a crucial role in ensuring the 

success of product installation and packaging processes. 

Incorrect orientation of materials can disrupt these 

processes, leading to failures. For instance, in the 

automated packaging of beverage products, bottle caps 

must be correctly positioned and oriented to ensure a 

seamless operation. Typically, this orientation process is 

facilitated by a bowl feeder, a vibrating system designed 

to orient and feed small parts automatically within the 

manufacturing line [1]. Although effective, the bowl 

feeder system is not infallible; occasionally, bottle caps 

remain incorrectly oriented on the conveyor, resulting in 

failures during the packaging stage. Such orientation 

errors not only disrupt the packaging process but can 

also compromise product quality and increase 

operational costs. To illustrate this issue, a visual 

depiction of an incorrectly oriented bottle cap after the 

bowl feeder process is provided in Figure 1, highlighting 

the potential for orientation errors that can lead to 

misalignment and failure in subsequent stages. 

A sorting process using sensors is commonly 

implemented to detect and address material orientation 

errors, ensuring only correctly oriented materials 

proceed to the next production stage. This sorting 

mechanism aims to remove improperly oriented items 

from the line, thus preventing disruptions. In specific 

applications, proximity sensors are used. For instance, 

prior research in [2] employed photoelectric proximity 

and color sensors to sort red and green apples, while 

other studies have utilized inductive proximity sensors 

to separate specific trash [3] and plastic and metal 

beverage bottles in another [4]. 

While proximity sensors can effectively sort defective 

materials, they are not suitable for specific items such as 

bottle caps. The distinct shape of bottle caps poses a 

challenge for detecting orientation errors using 

conventional proximity sensors. Accurate orientation 

checks can only be achieved through visual inspection, 

typically by observing the top surface of the bottle cap. 

This limitation motivates the current research, which 

aims to verify bottle cap orientation using visual 

techniques. In this approach, images of bottle caps are 

captured from above using a camera sensor. A pattern 

recognition process is then applied, leveraging machine 

learning algorithms to predict whether the bottle cap 

orientation is correct. Pattern recognition involves 

classifying input data into items and categories based on 

defined characteristics, as described in [5]. 
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Figure 1. Bottle caps feeding system and possible defect 

Support Vector Machines (SVM) and k-Nearest 

Neighbors (kNN) are commonly studied to assess their 

effectiveness in various specific applications. For 

instance, prior research in [6] compared and analyzed 

classification models for image forgery detection, 

although it involved complex feature extraction 

techniques. Research in [7] also highlights the 

performance of SVM and kNN when classifying 

handwritten digits. However, the performance 

assessment is based solely on classification accuracy. It 

does not emphasize the importance of other 

classification metrics, such as precision, recall, and F1 

score, for a more comprehensive evaluation. 

Beyond verifying material orientation, this research aims 

to compare the performance of SVM and kNN 

algorithms in this specific application. Additionally, a 

feature extraction method using Inception V3 image 

embedding is proposed to enhance the accuracy and 

robustness of verifying material orientation. 

Performance comparison in this study is conducted using 

evaluation metrics such as confusion matrix, precision, 

accuracy, F1 score, and recall, ensuring a comprehensive 

assessment. Moreover, comparison in terms of 

computational efficiency during training and validation 

is evaluated. The findings are intended to contribute 

toward the development of a material orientation 

verification system for production lines. 

This paper is organized as follows: Section 2 discusses 

the research methods, including the image embedding 

technique using Inception V3 and the application of 

SVM and kNN algorithms for classification. Section 3 

presents the evaluation results, offering a comprehensive 

analysis of each model's performance. Finally, Section 4 

provides conclusions and recommendations for future 

research, highlighting potential avenues for improving 

accuracy and efficiency in material orientation 

verification systems. 

2. Materials and Methods 

This research was conducted through three main stages. 

The first stage involved data collection of bottle caps. 

The second stage was a feature extraction, in which 

features were extracted from each image using the 

Inception V3 image embedding. The third stage focused 

on classification and evaluation, comparing the 

performance of the SVM and kNN. 

2.1. Dataset Collection 

The dataset used in this study consists of 1950 images of 

bottle caps, with 975 labeled as having the correct 

orientation and 975 labeled as having the incorrect 

orientation. The dataset is split into two subsets: 1500 

images for training and validation and the remaining 450 

images for testing. Data on bottle caps with five color 

variations—white, blue, red, orange, and green—were 

collected to evaluate whether the proposed method can 

be applied to bottle caps of different colors. Images were 

captured using a Basler industrial camera and were taken 

under three lighting conditions: bright, dim, and low 

light to enhance data variety. Sample images illustrating 

correct and incorrect orientations under these conditions 

are shown in Figure 2. Specifically, Figure 2 (a), (b), and 

(c) display bottle caps under bright lighting, dim 

lighting, and low-light indoor settings, where minimal 

light from adjacent rooms creates dim conditions. 

2.2. Image Embedding 

Image embedding is a feature extraction method used in 

this study to create high-dimensional vector 

representations of images. The purpose of image 

embedding is to organize visual information efficiently, 

allowing the model to capture essential features from 

images [8]. The Inception V3 Convolutional Neural 

Network (CNN) architecture is used as the basis for 

image embedding to extract complex image features. 

Through the use of Inception V3, detailed visual patterns 

essential for material orientation verification are 

captured. 

A pipeline was designed using Orange Data Mining to 

streamline the workflow. Orange Data Mining is an 

open-source data visualization and analysis tool that 

provides a visual programming environment. It allows 

users to connect modular widgets for different 

processing stages, making it easier to manage each step 

in the classification process. Figure 3 illustrates the 

workflow for verifying the bottle cap orientation. 

The first step involves loading images from the dataset 

folder. The dataset folder contains two subfolders: 

Correct Orientation and Incorrect Orientation. Each 

subfolder contains categorized images based on 

orientation. The second step is performing feature 

extraction, which extracts feature vector representations 

of each image. Here, Inception V3 image embedding is 

used. 

Inception V3 is a CNN architecture that combines 

multiple convolutional filters to enhance feature 

extraction across different scales. Inception V3 employs 

regularization and dropout techniques to avoid 

overfitting. Compared to Inception V2, this architecture 

offers smaller grid sizes and improvement of 

convolution efficiency. The improvement in Inception 

V3 can reduce computational resources while 

maintaining high accuracy [9]. 
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In the feature extraction process, each input image is 

resized to 299×299 pixels to match the Inception V3 

input dimensions. After resizing, the images are 

processed through the entire Inception V3 architecture, 

as shown in Figure 4. The architecture consists of 

multiple stages, including an input layer, where initial 

convolutional and max-pooling handle basic 

preprocessing. Next, the images pass through inception 

modules A, B, and C. Each is repeated multiple times 

with different configurations to capture features at 

varying complexity levels. Between these modules, grid 

size reduction layers decrease the spatial dimensions of 

the feature maps, facilitating deeper feature extraction in 

subsequent layers. After that, the images pass through 

the last inception module to capture high-level, abstract 

features. The feature extraction process yields the output 

of a 2048-dimensional vector for each image. These 

vectors are compressed yet rich representations 

containing patterns, textures, shapes, and other high-

level features that the Inception V3 neural network has 

extracted. 

2.3. Support Vector Machine 

Support Vector Machine (SVM) is a supervised learning 

algorithm that classifies data using a linear function in 

high-dimensional feature space [10]. SVM is trained on 

labeled data to find an optimal separating hyperplane, a 

boundary in feature space that maximally divides 

classes. The purpose of the SVM training is to maximize 

the margin or distance between the classes on either side 

of the hyperplane. In cases where data cannot be linearly 

separated, SVM can leverage various kernel functions, 

such as linear, polynomial, and Radial Basis Function 

(RBF) kernels. These kernel functions are used to map 

data into higher-dimensional spaces and apply non-

linear classification. 

SVM has several tuning parameters, including Cost (𝐶) 

and Epsilon (𝜖). The regularization parameter 𝐶 controls 

the trade-off between maximizing the margin and 

minimizing classification errors. A higher value of 𝐶 

allows the model to avoid misclassification and 

regression errors [11]. The parameter ε specifies a 

threshold within which errors are ignored when fitting 

the hyperplane. In this study, the parameters were set to 

𝐶=1.0 and 𝜖=0.10 to allow slight deviations without 

penalizing the model significantly. 

A linear kernel was selected to compute the dot product 

between two feature vectors, serving as similarity 

measurement. Equation 1 describes the formula for 

calculating linear kernel. Function 𝐾(𝑥, 𝑦) represents 

the kernel value between vectors 𝑥 and 𝑦. Notation 𝑥𝑖 
and 𝑦𝑖 are the feature values at the 𝑖-th index, and 𝑛 is 

the input vector dimension. 

𝐾(𝑥, 𝑦) =∑  

𝑛

𝑖=1

𝑥𝑖 ⋅ 𝑦𝑖 (1) 

SVM computes the linear kernel and then uses the 

resulting kernel values to find the optimal hyperplane. A 

   

(a) (b) (c) 

Figure 3. Sample images of bottle caps dataset. 

 

 
Figure 4. Classification workflow on Orange3 data mining software. 

 
Figure 2. Inception v3 image embedding architecture. 



Eldio Utama, Eko Rudiawan Jamzuri 

Journal of Applied Computer Science and Technology (JACOST) Vol. 6 No. 1 (2025) 

 

 
DOI : https://doi.org/10.52158/jacost.v6i1.1037 

20 

 

 

higher dot product suggests closer similarity in feature 

space. In contrast, a lower value indicates more 

significant dissimilarity. Consequently, this approach 

enables SVM to classify images based on their 

embedded feature vectors effectively, allowing for 

robust separation between classes. 

2.3. k-Nearest Neighbors 

k-Nearest Neighbors (kNN) is a classification 

algorithm that assigns a data point to a class based on 

the most common class among its closest neighbors. In 

this method, 𝑘 is a user-defined parameter representing 

the number of nearest neighbors considered during the 

classification process. kNN works by identifying the 

closest data points to the new data point being classified 

and then assigning its class based on the majority class 

of those neighbors [12]. The parameter 𝑘 was set 𝑘=5, 

meaning that each data point will be classified based on 

the five nearest neighbors. This classification relies on 

the similarity between the new data and existing data in 

the feature space. 

The similarity is measured by Euclidean distance, which 

calculates the distance between two points in cartesian 

space. Equation 2 shows the formula for calculating 

Euclidean distance. Notation 𝑑(𝑝, 𝑞) represents the 

distance between points 𝑝 and 𝑞, with 𝑝𝑖 and 𝑞𝑖 as the 

coordinates of those points, and notation 𝑛 defines the 

number of dimensions of the input vector. Once these 

distances are computed, the 𝑘 nearest neighbors are 

identified, and the classification process proceeds. 

𝑑(𝑝, 𝑞) = √(𝑝1 − 𝑞1)
2 +⋯+ (𝑝𝑛 − 𝑞𝑛)

2 (2) 

Moreover, a uniform weighting scheme was applied for 

kNN that assigns equal weight to all 𝑘 nearest neighbors, 

regardless of their specific distance from the target data 

point. Consequently, each neighbor contributes equally 

to determining the class of the new data point. By using 

a uniform weighting method and Euclidean distance 

metric, this kNN model provides a straightforward yet 

effective approach to classifying high-dimensional 

feature vectors derived from image embedding, thus 

enhancing the accuracy of material orientation 

verification. 

2.3. Performance Evaluation 

Algorithm evaluation begins with K-Fold cross-

validation, a method that estimates prediction errors and 

assesses model performance. In K-Fold cross-validation, 

the dataset is divided into 𝑘 subsets of approximately 

equal size. The classification model is trained and 

validated 𝑘 times, with each iteration using one subset as 

validation data while the remaining subsets serve as 

training data. Cross-validation, also known as rotation 

estimation, helps determine the robustness of the model 

across different data segments [13]. In this study, 10-fold 

cross-validation is applied to 1500 samples. In each 

iteration, the data is split into 1350 training samples and 

150 validation samples. 

The performance of SVM and kNN is compared using 

several evaluation metrics, including confusion matrix, 

classification accuracy (CA), precision, recall, and F1 

score. The confusion matrix presents the classification 

results with four key variables: True positive (TP), true 

negative (TN), false positive (FP), and false negative 

(FN). TP represents cases where both the actual and 

predicted classes are positive, and TN indicates cases 

where both are negative. FP occurs when a negative 

class is incorrectly predicted as positive, while FN arises 

when a positive class is incorrectly predicted as negative. 

CA is the ratio of correct predictions to the total number 

of samples, calculated as Equation 3. Precision is the 

proportion of true positive predictions out of the total 

positive predictions, calculated by Equation 4. Recall is 

the ratio of true positive predictions to the total number 

of actual positive examples, calculated as Equation 5. 

The F1 score balances precision and recall, providing a 

harmonic mean of the two, calculated by Equation 6. 

CA =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (3) 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

F1 score =
2 ×  Precision ×  Recall 

 Precision +  Recall 
 (6) 

By analyzing these metrics, a comprehensive 

understanding of each model's performance in handling 

part orientation verification is obtained. A higher 

accuracy, precision, recall, and F1 score indicate better 

classification performance, contributing to a reliable 

assessment of the methods used in this study. 

3. Results and Discussion 

This section outlines the performance evaluation of the 

classification model implemented on the bottle caps 

dataset. The analysis encompasses the model's capability 

to validate bottle cap orientation, utilizing the confusion 

matrix derived from the SVM and kNN methodologies. 

Table 1. Comparison results of SVM and kNN on verifying 

material orientation during training and validation. 

Model CA Prec. Recall F1 

score 

Training 

Time 

Validation 

Time 

SVM 1.0 1.0 1.0 1.0 3.101 1.479 

kNN  1.0 1.0 1.0 1.0 1.126 0.713 

 

Table 2. Comparison results of SVM and kNN on verifying 

material orientation during testing. 

Model CA Prec. Recall F1 score 

SVM 1.0 1.0 1.0 1.0 

kNN  0.967 0.969 0.967 0.967 
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Furthermore, the evaluations are detailed to obtain 

classification accuracy, precision, recall, and F1 score. 

3.1. Classification and Computational Efficiency  

Table 1 shows the results of a validation process 

comparing the performance of SVM and kNN methods. 

The evaluation was based on classification metrics, 

including classification accuracy (CA), precision, recall, 

F1 score, and training and validation time. 

Both SVM and kNN achieved perfect scores of 1.0 

across all classification metrics: CA, precision, recall, 

and F1 score. This result indicates that both methods 

were highly effective in classifying the dataset, 

demonstrating their ability to achieve flawless 

predictions without any misclassifications. 

However, differences were observed in computational 

efficiency, specifically in the training and validation 

time. For SVM, the training process took 3.101 seconds, 

while the validation phase required 1.479 seconds. In 

contrast, kNN demonstrated significantly faster 

performance, with a training time of 1.126 seconds and 

a validation time of 0.713 seconds. This result highlights 

kNN's computational efficiency, especially in scenarios 

where rapid validation and training are critical. 

Table 2 compares the performance of SVM and kNN in 

verifying bottle cap orientation during the testing phase. 

SVM once again achieved perfect performance, 

registering 1.0 in accuracy, precision, recall, and F1 

score. Meanwhile, kNN performed reliably, recording 

0.967 in accuracy, 0.969 in precision, 0.967 in recall, and 

0.967 in F1 score. Although both methods effectively 

distinguish correct from incorrect orientations, SVM 

demonstrated a slight edge by correctly classifying every 

sample in the test set. This result underscores SVM's 

robustness and reliability for orientation verification 

tasks. 

In summary, while SVM outperforms kNN in terms of 

accuracy, precision, recall, and F1 score, kNN offers 

superior computational speed. These findings suggest 

that kNN may be more appropriate for real-time 

applications or scenarios involving large-scale data 

where processing speed is critical. 

3.2. Confusion Matrix  

Figure 5 illustrates the confusion matrices for both the 

SVM and kNN models during testing. In Figure 5 (a), 

the confusion matrix for SVM shows no 

misclassifications, indicating that all correctly oriented 

and incorrectly oriented samples were accurately 

classified. By contrast, Figure 5 (b) presents the 

confusion matrix for kNN, revealing that 15 incorrectly 

oriented samples were erroneously predicted as correctly 

oriented. Overall, SVM demonstrates superior 

performance based on the confusion matrix results 

obtained in the testing phase. 

4. Conclusion 

In conclusion, this study demonstrates that both SVM 

and kNN are highly effective for verifying material 

orientation achieving strong classification metrics. SVM 

showed marginally better performance during testing, 

achieving a perfect classification score of 1.0, while 

kNN achieved 0.967. However, notable differences were 

observed in computational efficiency. kNN 

outperformed SVM in terms of computational speed, 

with significantly faster training and validation times. 

The training time for kNN was 1.126 seconds compared 

to 3.101 seconds for SVM, while the validation time for 

kNN was 0.713 seconds compared to 1.479 seconds for 

SVM. This result makes kNN more efficient and better 

suited for real-time applications or scenarios involving 

larger datasets, where processing speed is critical. 

In future research, it is suggested that alternative 

approaches for evaluating material orientation be 

explored, such as convolutional neural networks (CNN), 

gradient boosting, and other machine learning 

techniques. Expanding the evaluation to include these 

methods could enable a more comprehensive 

comparison, particularly with a more extensive and more 

varied dataset. This approach may offer new insights and 

allow for a deeper analysis of algorithm performance in 

material orientation evaluation. 
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